tính bằng cách hợp lý
(217+172).(915-315).(24-42)
(71997-71995):(71994.7)
(12+23+34+45).(13+23+3343).(38-812)
(28+83):(25.23)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2 17 + 17 2 9 15 - 3 15 2 4 - 4 2
= 2 17 + 17 2 9 15 - 3 15 16 - 16
= 2 17 + 17 2 9 15 - 3 15 . 0
= 0
b, 1 2 + 2 3 + 3 4 + 4 5 . ( 1 3 + 2 3 + 3 3 + 4 3 ) ( 3 8 - 81 2 )
= 1 2 + 2 3 + 3 4 + 4 5 . ( 1 3 + 2 3 + 3 3 + 4 3 ) ( 3 4 . 2 - 81 2 )
= 1 2 + 2 3 + 3 4 + 4 5 . ( 1 3 + 2 3 + 3 3 + 4 3 ) ( 81 2 - 81 2 )
= 1 2 + 2 3 + 3 4 + 4 5 . ( 1 3 + 2 3 + 3 3 + 4 3 ) . 0
= 0
c, 7 24 + 7 23 : 7 22
= 7 24 : 7 22 + 7 23 : 7 22
= 7 24 - 22 + 7 23 - 22
= 7 2 + 7 1
= 49 + 7 = 56
a) (217+ 172).(915– 315).(24 – 42)
= (217 + 172).(915 – 315).(16 - 16)
= 0
Vậy giá trị cần tìm là: 0
b) (82017– 82015) : (82104.8)
= 82015.(82- 1) : 82015
= 64 – 1
= 63
Vậy giá trị cần tìm là: 63
a) (217 + 172).(915 – 315).(24 – 42)
= (217 + 172).(915 – 315).(16 - 16)
= 0
Vậy giá trị cần tìm là: 0
b) (82017 – 82015) : (82104.8)
= 82015.(82- 1) : 82015
= 64 – 1
= 63
Vậy giá trị cần tìm là: 63
\(a,A=\left(2^{17}+17^2\right)\left(9^{15}-3^{30}\right).\left(2^4-32^2\right)\)
\(\Rightarrow A=\left(2^{17}+17^2\right)\left(3^{30}-3^{30}\right).\left(2^4-32^2\right)\)
\(\Rightarrow A=\left(2^{17}+17^2\right).0.\left(2^4-32^2\right)\)
\(\Rightarrow A=0.\)
\(\Rightarrow B=\left(2^8.8^3\right):\left(2^5.2^3\right)\)
\(\Rightarrow B=\left(2^8.2^9\right):\left(2^5.2^3\right)\)
\(\Rightarrow B=2^{17}:2^8\)
\(\Rightarrow B=2^9\)
\(\Rightarrow B=512\)
\(c,C=64^4.16^5:4^{20}\)
\(\Rightarrow C=2^{24}.2^{20}:2^{40}\)
\(\Rightarrow C=2^4\)
\(\Rightarrow C=16\)
a: \(A=\left(2^{17}+17^2\right)\cdot\left(2^4-32^2\right)\cdot\left(3^{30}-3^{30}\right)=0\)
b: \(B=\dfrac{2^8\cdot2^9}{2^5\cdot2^3}=2^9\)
c: \(C=2^{24}\cdot2^{20}:2^{40}=2^4=16\)
\(\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-81^2\right)\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left[3^8-\left(3^4\right)^2\right]\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-3^8\right)\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right).0=0\)
\(\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-81^2\right)=\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-3^8\right)=\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right).0=0\)
đáp án bằng 0
Vì ta phân tích \(2^4\) bằng \(4^2\) nên khi ta trừ cho nhau =0
Mặt khác tất cả các số nhân với nhau bằng 0
\(\left(2^{17}+7^2\right).\left(9^{15}-3^{15}\right).\left(2^4-4^2\right)\)
\(=\left(2^{17}+7^2\right).\left(9^{15}-3^{15}\right).\left(16-16\right)\)
\(=\left(2^{17}+7^2\right).\left(9^{15}-3^{15}\right).0\)
\(=0\)
-------------------------------------------------
\(\left(7^{1997}-7^{1995}\right):\left(7^{1994}.7\right)\)
\(=\left[7^{1995}\left(7^2-1\right)\right]:7^{1995}\)
\(=7^{1995}.48:7^{1995}\)
\(=48\)
-------------------------------------------------
\(\left(1^2+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^8-81^2\right)\)
\(=\left(1^2+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left(6561-6561\right)\)
\(=\left(1^2+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).0\)
\(=0\)
-------------------------------------------------
\(\left(2^8+8^3\right):\left(2^5.2^3\right)\)
\(=\left[2^8+\left(2^3\right)^3\right]:2^8\)
\(=\left(2^8+2^9\right):2^8\)
\(=2^8.\left(1+2\right):2^8\)
\(=2^8.3:2^8\)
\(=3\)
sos