Cho a,b,c t/m : a^2 +b^2+c^2=1.CMR:
\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ac}\le\frac{9}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(c+a\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(b+c\right)\left(c+a\right)}}\)
\(=\sqrt{\frac{a}{a+b}.\frac{a}{c+a}}+\sqrt{\frac{b}{a+b}.\frac{b}{b+c}}+\sqrt{\frac{c}{b+c}.\frac{c}{c+a}}\)
\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{c}{c+a}\right)\)
\(=\frac{1}{2}.3=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Ta có
\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(\Leftrightarrow\frac{2a}{\sqrt{ab+bc+ca+a^2}}+\frac{b}{\sqrt{ab+bc+ca+b^2}}+\frac{c}{\sqrt{ab+bc+ca+c^2}}\)
\(\Leftrightarrow2a.\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}+b.\frac{1}{\sqrt{\left(b+a\right)\left(b+c\right)}}+c.\frac{1}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
\(\Leftrightarrow2a.\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}+2b.\frac{1}{\sqrt{\left(a+b\right).4.\left(b+c\right)}}+2c.\frac{1}{\sqrt{\left(a+c\right).4.\left(b+c\right)}}\)
\(\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{4\left(b+c\right)}+\frac{c}{a+c}+\frac{c}{4\left(b+c\right)}\)
\(=1+1+\frac{1}{4}=\frac{9}{4}\)
Đặt A= abc(bc+a2)(ac+b2)(ab+c2)
Giả sử 1/a + /b + 1/c - (a+b)/(bc+a2) - (b+c)/(ac+b2) - (c+a)/(ab+c2) >=0
<=> (a4b4+b4c4+c4a4-a4b2c2-b4a2c2-c4a2b2)/A >= 0
<=> (2a4b4+2b4c4+2c4a4-2a4b2c2-2b4a2c2-2c4a2b2)/2A >= 0
<=> (a2b2-b2c2)2+(b2c2-c2a2)2+(c2a2-a2b2)2/2A >= 0 (đúng với mọi a,b,c)
mk chỉ lm theo cách hiểu của mk thôi!nếu ko đúng thì thông cảm nha!
giả sử: \(a\ge b\ge c>0\)(ko mất tính tổng quát)
\(\Rightarrow a^2\ge ac\)\(\Leftrightarrow a^2+bc\ge ac+bc\) (vì b>0;c>0)
\(\Leftrightarrow a^2+bc\ge c\left(a+b\right)\)
\(\Leftrightarrow\frac{a+b}{a^2+bc}\le\frac{1}{c}\) (vì a;b;c>0) (1)
c/m tương tự ta đc: \(\frac{b+c}{ac+b^2}\le\frac{1}{a};\) (2)
\(\frac{c+a}{ab+c^2}\le\frac{1}{b}\) (3)
từ (1),(2),(3)=>đpcm
Ta có:
\(\frac{1}{1-ab}=1+\frac{ab}{1-ab}\le1+\frac{ab}{1-\frac{a^2+b^2}{2}}\)
\(=1+\frac{ab}{a^2+b^2+2c^2}\le1+\frac{ab}{\sqrt{\left(c^2+a^2\right)\left(b^2+c^2\right)}}\)
\(\le1+\frac{1}{2}\left(\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}\right)\left(1\right)\)
Tương tự ta có:
\(\hept{\begin{cases}\frac{1}{1-bc}\le1+\frac{1}{2}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{c^2+a^2}\right)\left(2\right)\\\frac{1}{1-ca}\le1+\frac{1}{2}\left(\frac{c^2}{b^2+c^2}+\frac{a^2}{c^2+a^2}\right)\left(3\right)\end{cases}}\)
Từ (1), (2), (3)
\(\Rightarrow\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le3+\frac{1}{2}\left(\frac{a^2}{a^2+b^2}+\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{c^2+a^2}+\frac{c^2}{b^2+c^2}\right)\)
\(=3+\frac{1}{2}\left(1+1+1\right)=\frac{9}{2}\)
Bài 1 :
Bât đẳng thức cần chứng minh tương đương với :
( xy+yz + zx )(9 + x2y2 +z2y2 + x2z2 ) \(\ge\)36xyz
Áp dụng bất đẳng thức Côsi ta có :
xy+ yz + zx \(\ge3\sqrt[3]{x^2y^2z^2}\) ( 1)
Và 9 + x2y2 + z2y2 + x2z2 \(\ge12\sqrt[12]{x^4y^4z^4}\)
hay 9+ x2y2 + z2y2+ x2z2 \(\ge12\sqrt[3]{xyz}\) (2)
Do các vế đều dương ,từ (1) và (2) suy ra :
( xy + yz +zx )( 9+ x2y2 + z2y2 + x2z2 ) \(\ge36xyz\left(đpcm\right)\)
Dấu đẳng thức xảy ra khi và chỉ khi x = y =z = 1
Bài 2:
\(\hept{\begin{cases}a;b;c>0\\ab+bc+ca=1\end{cases}}\)
Có : \(\hept{\begin{cases}\sqrt{1+a^2}\ge\sqrt{2a}\Rightarrow\frac{a}{\sqrt{1+a^2}}\le\frac{\sqrt{3}}{2}a\\\sqrt{1+b^2}\ge\sqrt{2b}\Rightarrow\frac{b}{\sqrt{1+b^2}}\le\frac{\sqrt{3}}{2}b\\\sqrt{1+c^2}\ge\sqrt{2c}\Rightarrow\frac{c}{\sqrt{1+c^2}}\le\frac{\sqrt{3}}{2}c\end{cases}}\)
=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{\sqrt{3}}{2}\left(a+b+c\right)\le\frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{2}\left(ab+bc+ca\right)\)
=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{3}{2}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi a =b =c = \(\frac{1}{\sqrt{3}}\)
Làm lại:
\(VT\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)
\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2abc}=\frac{a+b+c}{2abc}\)
Đẳng thức xảy ra khi a =b = c .
Ngắn gọn súc tích không biết có lỗi gì không đây:)
BĐT là đối xứng giúp em nghĩ đến cách đặt \(p=a+b+c;q=ab+bc+ca;r=abc\)
BĐT \(\Leftrightarrow2r\left(\frac{\Sigma ab\left(a^2+b^2\right)+abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}{\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\right)\le p\)
\(\Leftrightarrow2r\left[\Sigma ab\left(a^2+b^2\right)+abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)\right]\le p\left[abc\left(a^3+b^3+c^3\right)+a^3b^3+b^3c^3+c^3a^3+2\left(abc\right)^2\right]\)\(\Leftrightarrow2r\left[p^2q-q^2-2pr\right]\le p\left[r\left(p^3-3pq+3r\right)+q^3-3pqr+5r^2\right]\)
\(\Leftrightarrow p^4r-8p^2qr+pq^3+12pr^2+2q^2r\ge0\)
\(\Leftrightarrow12pr^2+\left(p^4+2q^2-8p^2q\right)r+pq^3\ge0\)
Chú ý 2p > 0 , theo định lí về dấu tam thức bậc 2, ta cần chứng minh \(\Delta\le0\)
\(\Leftrightarrow\left(p^4+2q^2-8p^2q\right)^2-48p^2q^3\le0\)
Em chịu rồi:( ko bt có sai chỗ nào ko nữa:( Mong tìm được cách giải tự nhiên hơn.
đặt \(A=\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\)
\(\Rightarrow A-3=P=\frac{ab}{1-ab}+\frac{bc}{1-bc}+\frac{ca}{1-ca}\)
áp dụng BĐT cô-si ta có:
\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca\)
\(\Rightarrow\frac{a^2+b^2}{2}\ge ab;\frac{b^2+c^2}{2}\ge bc;\frac{c^2+a^2}{2}\ge ca\)
\(\Rightarrow1-\frac{a^2+b^2}{2}\le1-ab;1-\frac{b^2+c^2}{2}\le1-bc;1-\frac{c^2+a^2}{2}\le1-ca\)
\(\Rightarrow P\le\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\frac{2bc}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\frac{2ca}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{\left(a+b\right)^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\frac{\left(c+a\right)^2}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\right)\)
Áp dụng BĐT Schwarts ta có:
\(\frac{\left(a+b\right)^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\)
\(\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)
\(\frac{\left(c+a\right)^2}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\le\frac{a^2}{a^2+b^2}+\frac{c^2}{b^2+c^2}\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{1}{2}.3=\frac{3}{2}\)
\(\Rightarrow P+3\le\frac{3}{2}+3\)
\(\Rightarrow A\le\frac{9}{2}\)
dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Bất đẳng thức cần chứng minh tương đương: \(\frac{1}{ab-1}+\frac{1}{bc-1}+\frac{1}{ca-1}\ge\frac{-9}{2}\)
Theo bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\frac{1}{ab-1}+\frac{1}{bc-1}+\frac{1}{ca-1}\ge\frac{9}{ab+bc+ca-3}\)
\(\ge\frac{9}{a^2+b^2+c^2-3}=\frac{9}{1-3}=\frac{-9}{2}\left(Q.E.D\right)\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
vi cac so chua nguyen sap pi lut on theo
Minh nhap dung con gi ai giai giup minh voi