Tìm điều kiện của tham số m để (m-1)x^2-2(m-2)x+2-m>0 vô nghiệm với mọi x thuộc R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: m = 0 ta có phương trình 4x + 5 = 0 ⇔ x = − 5 4
TH2: m ≠ 0
Ta có ∆ = [−2(m – 2)]2 – 4m (m + 5) = − 36m + 16
Để phương trình đã cho vô nghiệm thì:
m ≠ 0 − 36 m + 16 < 0 ⇔ m ≠ 0 36 m > 16
⇔ m ≠ 0 m > 8 19 ⇒ m > 8 19
Vậy với m > 8 19 thì phương trình đã cho vô nghiệm
Đáp án cần chọn là: A
\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(4m+8\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow m^2-6m-7\le0\)
\(\Rightarrow-1\le m\le7\)
\(\Rightarrow m=\left\{-1;0;1;2;3;4;5;6;7\right\}\)
ĐK: \(\hept{\begin{cases}x\ne2\\x\ne-m-1\end{cases}}\)
\(\frac{x+2}{x-2}+\frac{m-x}{x+m+1}=0\)(1)
=> ( x + 2 ) ( x + m + 1 ) + ( m - x ) ( x - 2 ) = 0
<=> (m + 3 ) x + 2 ( m + 1 ) + ( m + 2 ) x - 2m = 0
< => ( 2m + 5 ) x + 2 = 0 (2)
TH1: 2m + 5 = 0 <=> m = -5/2
Khi đó (2) trở thành: 0x + 2 = 0 => phương trình vô nghiệm với mọi x
=> m = -5/2 thỏa mãn
TH2: 2m + 5 \(\ne\)0 <=> m \(\ne\)-5/2
khi đó: (2) có nghiệm: \(x=-\frac{2}{2m+5}\)
( 1) vô nghiệm <=> (2) có nghiệm x = 2 hoặc x = -m -1
<=> \(\orbr{\begin{cases}-\frac{2}{2m+5}=-m-1\\-\frac{2}{2m+5}=2\end{cases}}\)
Giải: \(-\frac{2}{2m+5}=-m-1\)
<=> 2 = ( m + 1 ) ( 2m + 5 )
<=> 2m^2 +7m +3= 0
<=> m = -1/2 hoặc m = -3 (tm m khác -5/2)
Giải: \(-\frac{2}{2m+5}=2\)
<=> 2m + 5 = - 1 <=> m = - 3 (tm)
Vậy m = -5/2; m = -3; m = -1/2 thì phương trình vô nghiệm.
Để \(ax^2+bx+c\ge0\) \(\forall x\in R\) thì \(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3-m>0\\\Delta'=\left(m+3\right)^2-\left(3-m\right)\left(m+2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\2m^2+5m+3\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\-\dfrac{3}{2}\le m\le-1\end{matrix}\right.\)
\(\Rightarrow-\dfrac{3}{2}\le m\le-1\)
\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2
Ta có : \(\left(m-1\right)x^2-2\left(m-2\right)x+2-m>0\)
Có \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(2-m\right)\left(m-1\right)\)
\(=m^2-4m+4+m^2-m-2=2m^2-5m+2\)
TH1 : m - 1 =0 => m = 1
- Thay m = 1 vào BPT ta được : 2x + 1 > 0
=> BPT có nghiệm ( L )
TH2 : \(m\ne1\)
- Để BPT trên vô nghiệm với mọi x thuộcR \(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}\le m\le2\\m< 1\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{2}\le m< 1\)
Vậy ...
Sai r bn ơi
Bn phân tích ▲' ra sai r