T×m x, y Z, biÕt | x + 35 – 40 | + | y + 10 – 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu vậy thì PT có rất nhiều nghiệm
|x + 35 - 40| + |y +10 - 11| \(\le\) 0 chứ
ta có | x + 35 -40| lớn hơn hoặc bằng 0
| y + 10 -11| lớn hơn hoặc bằng 0
mà theo đề bài thì | x + 35 -40| + | y + 10 -11| < 0 nên vô lý
vậy không có giá trị x,y thỏa mãn đề bài
a: Sửa đề: xy=35; yz=5
\(\left(xy\cdot yz\cdot xz\right)=\left(35\cdot7\cdot5\right)^2=35^2=35\)
=>z=1; x=5; y=7
b: \(x+y+z=\dfrac{-1+6+1}{2}=3\)
=>z=3+1=4; y=3-6=-3; x=3-1=2
1/ a, Ta có :
\(x-2y+3z=35\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)
Vậy ..
\(x\left(x-y+z\right)=-11;y\left(y-x-z\right)=25;z\left(z+x-y\right)=35\)
Suy ra \(x\left(x-y+z\right)+y\left(y-z-x\right)+z\left(z+x-y\right)=49\)
\(\Leftrightarrow x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=49\)
\(\Leftrightarrow\left(x-y+z\right)\left(x-y+z\right)=49\)
\(\Leftrightarrow\left(x-y+z\right)^2=49\)
Do đó, \(x-y+z=\pm7\)
Suy ra.....
Suy ra cái gì?
Bạn chỉ mới chứng minh được \(x-y+z=\pm7\) thôi
Trong khi đề bài lại bảo tìm 3 số \(x;y;z\) cơ mà?
Chẳng lẽ chỉ cần \(x-y+z=\pm7\) là có thể suy ra \(x;y;z\) được hay sao?
Bạn giải gì thì giải cũng cần phải đủ ý chứ! CTV mà lại Nguyễn Xuân Sáng
Bài 2:
Ta có: \(\dfrac{x-1}{65}+\dfrac{x-3}{63}=\dfrac{x-5}{61}+\dfrac{x-7}{59}\)
\(\Leftrightarrow\left(\dfrac{x-1}{65}-1\right)+\left(\dfrac{x-3}{63}-1\right)=\left(\dfrac{x-5}{61}-1\right)+\left(\dfrac{x-7}{59}-1\right)\)
\(\Leftrightarrow\left(x-66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)
=>x-66=0
hay x=66