chứng minh rằng: 2008 mũ 100 + 2008 mũ 99 chia hết cho 2009
12345 mũ 678 - 1234 mũ 677 chia hết cho 12344
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 2008100 + 200899 = 200899.(2008+1) = 200899.2009 chia hết cho 2009
=> 2008100 + 200899 chia hết cho 2009 ( đ p c m)
ta có: 12345678 -12345677 = 12345677.(12345-1) = 12345677.12344 chia hết cho 12344
=> đ p c m
\(2008^{100}+2008^{99}=2008^{99}.\left(2008+1\right)=2008^{99}.2009\)
Mà \(2009⋮2009\Rightarrow2008^{99}.2009⋮2009\)
Vậy \(2008^{100}+2008^{99}\)chia hết cho 2009 ( đpcm )
\(12345^{678}-12345^{677}=12345^{677}.\left(12345-1\right)=12345^{677}.12344\)
Mà \(12344⋮12344\Rightarrow12345^{677}.12344⋮12344\)
Vậy \(12345^{678}-12345^{677}\)chia hết cho 12344 ( đpcm )
a) Ta có:
\(2008^{100}+2008^{99}\)
\(=2008^{99}.\left(2008+1\right)\)
\(=2008^{99}.2009\)
Vì \(2009⋮2009\) nên \(2008^{99}.2009⋮2009.\)
\(\Rightarrow2008^{100}+2008^{99}⋮2009.\)
b) Ta có:
\(12345^{678}-12345^{677}\)
\(=12345^{677}.\left(12345-1\right)\)
\(=12345^{677}.12344\)
Vì \(12344⋮12344\) nên \(12345^{677}.12344⋮12344.\)
\(\Rightarrow12345^{678}-12345^{677}⋮12344.\)
Chúc bạn học tốt!
a, 2008\(-⋮\)-1(mod 2009)
\(2008^{100}-⋮1\left(mod2009\right)\)
\(2008^{99}-⋮-1\left(mod2009\right)\)
=>\(2008^{100}+2008^{99}⋮2009\)
b,\(12345-⋮1\left(mod12344\right)\)
\(12345^{678}-⋮1\left(mod12344\right)\)
\(12345^{677}-⋮1\left(mod12344\right)\)
\(12345^{678}+12345^{677}không⋮12344\)(đề sai)
\(-⋮\)là đồng dư nha
70 + 71 + 72 + 73 + ... + 72008 + 72009
= (1 + 7) + (1 + 7) . 73 + ... + (1 + 7) . 72009
=8 + 8 . 73 + ... + 8 . 72009
= 8 . (1 + 73 + ... + 72009)
Vậy tổng trên chia hết cho 8
Ta có : ( 70 + 71 + 72 + 73 + ..... + 72008 + 72009 )
(=) ( 1 + 7 + 72 + 7 3 + ...... + 72008 + 72009 )
(=) 1 . ( 1 + 7 ) + 72 . ( 1 + 7 ) + ....... + 72008 . ( 1 + 7 )
(=) ( 1 + 7 ) . ( 1 + 72 + ..... + 72008 )
(=) 8 . ( 1 + 72 + ..... + 72008 ) chia hết cho 8 ( vì 8 chia hết cho 8 )
\(2^{50}=\left(2^5\right)^{10}=32^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}\)
Suy ra: 250 > 520
b)
\(9^{200}=\left(9^2\right)^{100}=81^{100}\)
Suy ra: 99100 > 81100
1. a) Ta thấy: 230=23.10=(23)10=810
320=32.10=(32)10=910
810<910 => 230<320
b) 5202=52.101=(52)101=25101
2505=25.101=(25)101=32101
Mà 25101<32101 =. 5202<2505
2. a) Ta có: 2008100+200899=200899.2008+200899=200899.(2008+1)=200899.2009
200899.2009 chia hết cho 2009 => 2008100+200899 chia hết cho 2009.
b) 12345678-12345677=12345677.12345 - 12345677=12345677.(12345-1)=12345677.12344
=> 12345677.12344 chia hết cho 12344 =. 12345678-12345677 chia hết cho 12344.
k mình nha.
1. a) Ta thấy: 2 30=2 3.10=(2 3 )10=8 10 3 20=3 2.10=(3 2 )10=9 10 8 10<9 10
=> 2 30<3 20 b) 5 202=5 2.101=(5 2 )101=25 101 2 505=2 5.101=(2 5 )101=32 101
Mà 25 101<32 101 =. 5 202<2 505 2. a) Ta có: 2008 100+2008 99=2008 99 .2008+2008 99=2008 99 .(2008+1)=2008 99 .2009
2008 99 .2009 chia hết cho 2009
=> 2008 100+2008 99 chia hết cho 2009.
b) 12345 678 -12345 677=12345 677 .12345 - 12345 677=12345 677 .(12345-1)=12345 677 .12344
=> 12345 677 .12344 chia hết cho 12344 =. 12345 678 -12345 677 chia hết cho 12344.
k mình nha.
D = 112009 + 112008 + ... + 112000 ( Có 10 SH )
Thấy mỗi số hạng của D có dạng 11n ( n = 2000; 2001;..;2009 ) đều có chữ số tận cùng là 1
=> D có chữ số tận cùng là 0
=> D \(⋮\)5 ( đpcm )
\(D=11^{2009}+11^{2008}+11^{2007}+...+11^{2000}\)
Số số hạng là: (2009 - 2000) : 1 + 1 = 10 (số)
Mà ta thấy số nào tận cùng bằng 1 lũy thừa bao nhiêu cũng tận cùng bằng 1
\(\Rightarrow D=...1+...1+...1+...+...1\)
\(\Rightarrow D=...0\)
Mà số nào tận cùng bằng 0 thì chia hết cho 5
Vậy \(D⋮5\)(ĐPCM)
a)2008100 + 200899 = 200899.(1 + 2008)=200899.2009
Từ đó suy ra : 200899+2008100 chia hết co 2009
b)
12345678 - 12345677 = 12345677. ( 12345 - 1 ) = 12345677 . 12344
=> 12345678 - 12345677 chia hết cho 12344
k nha ><Thanks
Ta có: \(2008^{100}+2008^{99}=2008^{99}\left(2008+1\right)\)
\(=2008^{99}.2009\)
Vậy \(2008^{100}+2008^{99}⋮2009\)