K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

a) \(x^2-xy+x-y\)

\(=\left(x^2+x\right)-\left(xy+y\right)\)

\(=x\left(x+1\right)-y\left(x+1\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

b) \(x^2+2xy-4x-8y\)

\(=x\left(x+2y\right)-4\left(x+2y\right)\)

\(\left(x-4\right)\left(x+2y\right)\)

c) \(x^3-x^2-x+1\)

\(=x^2\left(x-1\right)-\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-1\right)\)

\(=\left(x-1\right)^2\left(x+1\right)\)

a: 6x-2y=2(3x-y)

b: =(x-y)(x-2)(x+2)

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
a. Không phân tích được nữa

b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$

$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$

15 tháng 12 2021

\(a,=x\left(x-2\right)^2\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\\ c,=x^2\left(2x-1\right)-4\left(2x-1\right)=\left(x-2\right)\left(x+2\right)\left(2x-1\right)\\ d,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ e,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x\left[\left(x-2\right)^2-y^2\right]=x\left(x-y-2\right)\left(x+y-2\right)\\ g,=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\\ h,=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)^2\left(x+2\right)\\ i,=3x^2+3x-10x-10=\left(x+1\right)\left(3x-10\right)\)

22 tháng 10 2021

\(a,=x\left(x^2-4x+4-z^2\right)=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-z-2\right)\left(x+z-2\right)\\ b,=\left(x-y\right)^2-\left(z-5\right)^2=\left(x-y-z+5\right)\left(x-y+z-5\right)\)

NV
22 tháng 10 2021

\(x^3-4x^2+4x-xz^2=x\left(x^2-4x+4-z^2\right)\)

\(=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-2-z\right)\left(x-2+z\right)\)

\(x^2-2xy+y^2-z^2+10z-25\)

\(=\left(x-y\right)^2-\left(z-5\right)^2\)

\(=\left(x-y+z-5\right)\left(x-y-z+5\right)\)

NV
16 tháng 7 2021

a.

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)

\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)

b.

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c.

\(=x^4-1+4x^2-4\)

\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

a) Ta có: \(x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

b) Ta có: \(x^2-2xy+y^2-zx+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c) Ta có: \(x^4+4x^2-5\)

\(=x^4+4x^2+4-9\)

\(=\left(x^2+2\right)^2-3^2\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

12 tháng 10 2023

2:

a: \(=\left(2x^2-xy\right)+\left(2xz-yz\right)\)

\(=x\left(2x-y\right)+z\left(x-2y\right)=\left(x-2y\right)\left(x+z\right)\)

b: \(=\left(x^2-4y^2\right)-\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y-1\right)\)

c: \(=\left(y^2+10y+25\right)-9z^2\)

\(=\left(y+5\right)^2-\left(3z\right)^2\)

\(=\left(y+5+3z\right)\left(y+5-3z\right)\)

d: \(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)

\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)

1:

a: \(x\left(3-4x\right)+5\left(3-4x\right)=\left(3-4x\right)\left(x+5\right)\)

b: \(2y\left(5y-6\right)-4\left(6-5y\right)\)

\(=2y\left(5y-6\right)+4\left(5y-6\right)\)

\(=2\left(5y-6\right)\left(y+2\right)\)

c: \(=27\left(x-2\right)^3-3x\left(x-2\right)^2\)

\(=3\left(x-2\right)^2\cdot\left[9\left(x-2\right)-x\right]\)

\(=3\left(x-2\right)^2\left(8x-18\right)=6\left(x-2\right)^2\cdot\left(4x-9\right)\)

d: \(=6y\left(x-y\right)\left(x+y\right)-8y\left(x+y\right)^2\)

\(=2y\left(x+y\right)\left[3\left(x-y\right)-4\left(x+y\right)\right]\)

\(=2y\left(x+y\right)\left(3x-3y-4x-4y\right)\)

\(=2y\left(x+y\right)\left(-x-7y\right)\)

12 tháng 10 2023

Bài 1

a) x(3 - 4x) + 5(3 - 4x)

= (3 - 4x)(x + 5)

b) 2y(5y - 6) - 4(6- 5y)

= 2y(5y - 6) + 4(5y - 6)

= (5y - 6)(2y + 4)

= 2(5y - 6)(y + 2)

c) 27(x - 2)³ - 3x(2 - x)²

= 27(x - 2)³ - 3x(x - 2)²

= 3(x - 2)²[9(x - 2) - x]

= 3(x - 2)²(9x - 18 - x)

= 3(x - 2)²(8x - 18)

= 6(x - 2)²(4x - 9)

d) 6y(x² - y²) - 8y(x + y)²

= 6y(x - y)(x + y) - 8y(x + y)²

= 2y(x + y)[3(x - y) - 4(x + y)]

= 2y(x + y)(3x - 3y - 4x - 4y)

= 2y(x + y)(-x - 7y)

= -2y(x + y)(x + 7y)

a: Ta có: \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\)

\(=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\)

\(=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)\)

\(=\left(x-1\right)\left(2x^2-9x+6\right)\)

b: Ta có: \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=-x\left(x-y\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]\)

\(=\left(x-y\right)\left[-x^3+2x^2y-xy^2-xy+y^2+xy\right]\)

\(=\left(x-y\right)\left(-x^3+2x^2y-xy^2+y^2\right)\)

30 tháng 8 2021

a) \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)=\left(x-1\right)\left(2x^2-9x+6\right)\)

b) \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]=\left(x-y\right)\left(-x^3+2x^2y-xy^2-xy+y^2+xy\right)=\left(x-y\right)\left(-x^3+y^2+2x^2y-xy^2\right)\)

c) \(xy\left(x+y\right)-2x-2y=xy\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(xy-2\right)\)

d) \(x\left(x+y\right)^2-y\left(x+y\right)^2+y^2\left(x-y\right)=\left(x+y\right)^2\left(x-y\right)+y^2\left(x-y\right)=\left(x-y\right)\left(x^2+2xy+y^2+y^2\right)=\left(x-y\right)\left(x^2+2y^2+2xy\right)\)

giỏi vậy tui ngồi làm quài ko ra lun :^

6 tháng 8 2021

a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)

b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)

\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(1+x+2y\right)\)

b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

a:=2(x-2)+y(x-2)

=(x-2)(y+2)

b: \(=\left(x+y\right)^2-4\)

=(x+y+2)(x+y-2)