K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

Để \(\sqrt{x^2+x+3}\) nguyên thì

\(\Rightarrow x^2+x+3=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4x^2+4x+12=4a^2\)

\(\Leftrightarrow4a^2-\left(2x+1\right)^2=11\)

\(\Leftrightarrow\left(2a+2x+1\right)\left(2a-2x-1\right)=11\)

\(\Leftrightarrow\left(2a+2x+1,2a-2x-1\right)=\left(1,11;11,1;-1,-11;-11,-1\right)\)

\(\Leftrightarrow\left(a,x\right)=\left(3,-3;3,2;-3,-3;-3,2\right)\)

Vậy ....

16 tháng 6 2017

\(\sqrt{x^2+x+3}=a\left(a\in Z\right).\)

\(\Rightarrow x^2+x+3=a^2\Leftrightarrow4x^2+4x+12=4a^2\Leftrightarrow\left(2x+1\right)^2-\left(2a\right)^2=-11\)

\(_{\Leftrightarrow\left(2x+1-2a\right)\left(2x+1+2a\right)=-11}\)

Sau đó thì dễ rồi vì a,x nguyên tìm nghiệm của -11 là xong

√x2+x+3=a(a∈Z).

⇒x2+x+3=a2⇔4x2+4x+12=4a2⇔(2x+1)2−(2a)2=−11

⇔(2x+1−2a)(2x+1+2a)=−11

Sau đó thì dễ rồi vì a,x nguyên tìm nghiệm của -11 là xong

14 tháng 6 2017

a)\(pt\Leftrightarrow\sqrt{x^2-2x+2}+\sqrt{3x^2-6x+4}-2=0\)

\(\Leftrightarrow\sqrt{x^2-2x+2}-1+\sqrt{3x^2-6x+4}-1=0\)

\(\Leftrightarrow\frac{x^2-2x+2-1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}=0\)

\(\Leftrightarrow\frac{x^2-2x+1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+3}{\sqrt{3x^2-6x+4}+1}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{x^2-2x+2}+1}+\frac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}\right)=0\)

Dễ thấy: \(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}>0\) (loại)

Nên x-1=0 suy ra x=1

b)\(pt\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}+x^2+2x-5=0\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+21}-4+x^2+2x+1=0\)

\(\Leftrightarrow\frac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\frac{5x^2+10x+21-16}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)

Dễ thấY: \(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1>0\) (loại luôn)

Nên x+1=0 suy ra x=-1

\(B=\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

Để B nguyên thì \(\sqrt{x}-3\in\left\{1;-1;5\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;2;8\right\}\)

hay \(x\in\left\{16;4;64\right\}\)

 

Để A nguyên thì \(2\sqrt{x}+3⋮3\sqrt{x}-1\)

\(\Leftrightarrow6\sqrt{x}+9⋮3\sqrt{x}-1\)

\(\Leftrightarrow3\sqrt{x}-1\in\left\{-1;1;11\right\}\)

\(\Leftrightarrow3\sqrt{x}\in\left\{0;12\right\}\)

hay \(x\in\left\{0;16\right\}\)

4 tháng 9 2021
30 tháng 7 2021

a, đk: \(x\ge0,x\ne9,x\ne4\)

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2-\sqrt{x}}{-\left(\sqrt{x}-3\right)\left(2-\sqrt{x}\right)}=\dfrac{-1}{\sqrt{x}-3}\)

b,\(Q< -1=>\dfrac{-1}{\sqrt{x}-3}+1< 0< =>\dfrac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(< =>\dfrac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)

\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\)\(< =>\left[{}\begin{matrix}\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\end{matrix}\right.\)\(< =>9< x< 16\)

c, \(=>2Q=\dfrac{-2}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\in Z\)

\(< =>\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)\(=>x\in\left\{16;4\right\}\)(loại 4)

=>x=16

30 tháng 7 2021

a) \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-3\dfrac{\sqrt{x}-1}{x-5\sqrt{x}+6}\) 

Ta có \(x-5\sqrt{x}+6=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>9\\x>2\end{matrix}\right.\) \(\Leftrightarrow x>9\)

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-3\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(x-4\right)-\left(x-2\sqrt{x}-3\right)-\left(3\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-1}{\left(\sqrt{x}-3\right)}=\dfrac{1}{3-\sqrt{x}}\)

b) \(Q< -1\Leftrightarrow\dfrac{1}{3-\sqrt{x}}< -1\) \(\Leftrightarrow\dfrac{1}{3-\sqrt{x}}+1< 0\) \(\Leftrightarrow\dfrac{4-\sqrt{x}}{3-\sqrt{x}}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-\sqrt{x}>0\\3-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4-\sqrt{x}< 0\\3-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow9< x< 16\)

Vậy để \(Q< -1\) thì \(S=\left\{x/9< x< 16\right\}\)

c) \(2Q\in Z\Leftrightarrow\dfrac{2}{3-\sqrt{x}}\in Z\)

\(\Rightarrow3-\sqrt{x}\inƯ\left(2\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}3-\sqrt{x}=2\\3-\sqrt{x}=-2\\3-\sqrt{x}=1\\3-\sqrt{x}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=25\\x=4\\x=16\end{matrix}\right.\)

Kết hợp với ĐKXĐ,ta có để \(2Q\in Z\) thì \(x\in\left\{16;25\right\}\)