1/1.3+1/3.4+1/4.5+....+1/99.100
Giai giùm mình rõ ràng cho like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)
= 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)
= 1 - \(\frac{1}{7}\)= \(\frac{6}{7}\)
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A= 3.(1.2 + 2.3 + 3.4 + ..... +99.100)
3A=1.2.(3-0) + 2.3.(4-1) +.....+99.100.(101-98)
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
đặt A = 1.2 + 3.4 + 4.5 +...+ 99.100
A=1.2+2.3+3.4+4.5+...+99.100
=>3A=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
=1.2.3+2.3.﴾4‐1﴿+3.4.﴾5‐2﴿+4.5.﴾6‐3﴿+...+99.100.﴾101‐98﴿
=1.2.3+2.3.4‐1.2.3+3.4.5‐2.3.4+4.5.6‐3.4.5+...+99.100.101‐98.99.100
=1.2.3‐1.2.3+2.3.4‐2.3.4+3.4.5‐3.4.5+4.5.6‐4.5.6+...+99.100.101
=99.100.101=999900
=>A=999900:3=333300
Vậy A=333300
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A=1.2.(3-0) + 2.3.(4-1) +.....+99.100.(101-98)
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
Ta có : \(\frac{1}{2.3}< \frac{1}{1.2}\)
\(\frac{1}{3.4}< \frac{1}{2.3}\)
\(\frac{1}{4.5}< \frac{1}{3.4}\)
...
\(\frac{1}{99.100}< \frac{1}{98.99}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(A< 1-\frac{1}{99}< 1\)
\(\Rightarrow A< 1\)
A \(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Vì \(\frac{49}{100}< 1\Rightarrow A< 1\)
Chúc bn hk tốt :>
Ta có: A=1.2+2.3+...+198.199+199.200
=>3A=1.2.3+2.3.3+...+198.199.3
+199.200.3
=>3A=1.2.3+2.3(4-1)+...+
198.199(200-197)+199.200(201-198)
=>3A=1.2.3+2.3.4-1.2.3+...+198.199.200
-197.198.199+199.200.201-198.199.200
=>3A=199.200.201
=>A=199.200.67
A=39800.67
A=2666600
\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+\dfrac{8-7}{7.8}+\dfrac{9-8}{8.9}+\dfrac{10-9}{9.10}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\\ =1-\dfrac{1}{10}\\ =\dfrac{10-1}{10}=\dfrac{9}{10}\)
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=2-1/1.2+3-2/2.3+4-3/3.4+...+10-9/9.10
=1-1/2+1/2-1/3+1/3-1/4+....+1/9-1/10
=1-1/10
=9/10
A = 1/2 - 1/3 + 1/3 -1/4 + 1/4 -1/5 + ...+ 1/98 - 1/99 + 1/99 - 1/100
A = 1/2 - 1/100 = 49/100