K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\(\left( {3{x^2} - 5xy - 4{y^2}} \right).\left( {2{x^2} + {y^2}} \right) + \left( {2{x^4}y^2 + {x^3}{y^3} + {x^2}{y^4}} \right):\left( {\dfrac{1}{5}xy} \right)\\\)

\(= 3{x^2}.2{x^2} + 3{x^2}.{y^2} - 5xy.2{x^2} - 5xy.{y^2} - 4{y^2}.2{x^2} - 4{y^2}.{y^2} + 2{x^4}y^2:\left( {\dfrac{1}{5}xy} \right) + {x^3}{y^3}:\left( {\dfrac{1}{5}xy} \right) + {x^2}{y^4}:\left( {\dfrac{1}{5}xy} \right)\\\)

\(= 6{x^4} + 3{x^2}{y^2} - 10{x^3}y - 5x{y^3} - 8{x^2}{y^2} - 4{y^4} + 10{x^3}y + 5{x^2}{y^2} + 5x{y^3}\\\)

\(= 6{x^4} - 4{y^4}+ ( - 10{x^3}y + 10{x^3}y) + \left( { - 5x{y^3} + 5x{y^3}} \right) + \left( {3{x^2}{y^2} - 8{x^2}{y^2} + 5{x^2}{y^2}} \right)\\\)

\(= 6{x^4} - 4{y^4}\)

29 tháng 7 2023

a) \(Q=\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y\right)^2\)

\(Q=\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot2\left(x+2y\right)+\left[2\left(x+2y\right)\right]^2\)

\(Q=\left[\left(x-y\right)-2\left(x+2y\right)\right]^2\)

\(Q=\left(x-y-2x-4y\right)^2\)

\(Q=\left(-x-5y\right)^2\)

b) \(A=\left(xy+2\right)^3-6\left(xy+2\right)^2+12\left(xy+2\right)-8\)

\(A=\left(xy+2\right)^3-3\cdot2\cdot\left(xy+2\right)^2+3\cdot2^2\cdot\left(xy+2\right)-2^3\)

\(A=\left[\left(xy+2\right)-2\right]^3\)

\(A=\left(xy+2-2\right)^3\)

\(A=\left(xy\right)^3\)

\(A=x^3y^3\)

c) \(\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)

\(=\left(x^3+6x^2+12x+8\right)+\left(x^2-6x^2+12x-8\right)-\left(2x^3+24x\right)\)

\(=x^3+6x^2+12x+8+x^2-6x^2+12x-8-2x^3-24x\)

\(=\left(x^3+x^3-2x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x-24x\right)+\left(8-8\right)\)

\(=0\)

a: =(x-y)^2-2(x-y)(2x+4y)+(2x+4y)^2

=(x-y-2x-4y)^2=(-x-5y)^2=x^2+10xy+25y^2

b: =(xy+2-2)^3=(xy)^3=x^3y^3

c: =x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x(x^2+12)

=24x+2x^3-2x^3-24x

=0

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

a)

\(\begin{array}{l}\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\\ = x.{x^2} + x.xy + x.{y^2} - y.{x^2} - y.xy - y.{y^2}\\ = {x^3} + {x^2}y + x{y^2} - {x^2}y - x{y^2} - {y^3}\\ = {x^3} - {y^3}\end{array}\)

b)

\(\begin{array}{l}\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\\ = x.{x^2} + x.\left( { - xy} \right) + x{y^2} + y.{x^2} + y.\left( { - xy} \right) + y.{y^2}\\ = {x^3} - {x^2}y + x{y^2} + {x^2}y - x{y^2} + {y^3}\\ = {x^3} + {y^3}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

c)

\(\begin{array}{l}\left( {4{\rm{x}} - 1} \right)\left( {6y + 1} \right) - 3{\rm{x}}\left( {8y + \dfrac{4}{3}} \right)\\ = 4{\rm{x}}.6y + 4{\rm{x}}.1 - 1.6y - 1.1 - 3{\rm{x}}.8y - 3{\rm{x}}.\dfrac{4}{3}\\ = 24{\rm{x}}y + 4{\rm{x}} - 6y - 1 - 24{\rm{x}}y - 4{\rm{x}}\\ =  - 6y - 1\end{array}\)

d)

\(\begin{array}{l}\left( {x + y} \right)\left( {x - y} \right) + \left( {x{y^4} - {x^3}{y^2}} \right):\left( {x{y^2}} \right)\\ = x.x + x.\left( { - y} \right) + y.x + y.\left( { - y} \right) + \left( {x{y^4}} \right):\left( {x{y^2}} \right) + \left( { - {x^3}{y^2}} \right):\left( {x{y^2}} \right)\\ = {x^2} - xy + xy - {y^2} + {y^2} - x^2\\ = 0\end{array}\)

31 tháng 5 2017

\(=\frac{x^2+xy+y^2}{x+y}.\left(\frac{1}{\left(x-y\right)x}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)

\(=\frac{x^2+xy+y^2}{x+y}.\frac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)

6 tháng 10 2021

a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)

b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)

c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)

d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)

e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)