Cho b>a>0. Thỏa mãn: 3a^2 +b^2 =4ab
Tính A= a-b/a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(3a^2+3b^2=10ab\Rightarrow a^2+b^2=\frac{10ab}{3}\)
hay: \(a^2+b^2=\frac{10}{3}ab\Rightarrow a^2+b^2+2ab=\frac{10}{3}ab+2ab\Rightarrow\left(a+b\right)^2=\frac{16}{3}ab\) (1)
\(a^2+b^2=\frac{10}{3}ab\Rightarrow a^2+b^2-2ab=\frac{10}{3}ab-2ab\Rightarrow\left(a-b\right)^2=\frac{4}{3}ab\) (2)
Ta có \(p=\frac{a+b}{a-b}\Rightarrow p^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{\frac{16}{3}ab}{\frac{4}{3}ab}=4\) Vậy \(p=2\) hoặc \(p=-2\)
ta có 3a^2 +3b^2=10ab
<=> 3a(a-3b) - b(a-3b)=0
<=> (3a-b)(a-3b)=0
=> a=3b ; 3a=b (loại vì a>b>0)
thay a=3b
ta có P=3b-b/3a+b
= 2b/4b
=1/2
Ta có :
3a2 + 3b2 = 10ab
<=> 3a2 + 3b2 - 10ab = 0
<=>4a2 - a2 + 4b2 - b2 - 8ab- 2ab = 0
<=> ( 4a2 - 8ab + 4b2 ) - ( a2 + 2ab + b2 ) = 0
<=> ( 2a + 2b )2 - ( a - b )2 = 0
<=> ( 2a + 2b )2 = ( a - b )2
<=> 2a + 2b = a - b ( 1 )
Thay (1) vào P ta được :
\(P=\frac{2a+2b}{a+b}\)
\(P=\frac{2\left(a+b\right)}{a+b}\)
\(P=2\)
Mạo danh cũng ko xong , chúa pain ko bao giờ nói " giúp pain đi " hay đúng hơn là t ko cần con người giải giúp mấy bài toán easy ntn này
Bài làm:
Ta có: \(P=\frac{4}{a}+\frac{4}{b}+3a+3b-2\)
\(P=\left(\frac{4}{a}+a\right)+\left(\frac{4}{b}+b\right)+2\left(a+b\right)-2\)
Áp dụng bất đẳng thức Cauchy ta được:
\(P\ge2\sqrt{\frac{4}{a}.a}+2\sqrt{\frac{4}{b}.b}+2.4-2\)
\(=4+4+8-2=14\)
Dấu "=" xảy ra khi: \(a=b=2\)
Vậy Min(P) = 14 khi a=b=2
Cosi: ab <= 1/4
Quy đồng P, ta đc:
P = (2ab+1)/(ab+2).
Ta cm P <= 2/3
<=> 3(2ab+1) <= 2(ab+2)
<=> ab<= 1/4 (đúng)
Vậy maxP = 2/3 khi a=b =1/2
3a^2 + b^2 - 4ab = 0
<=> a^2 - 2ab + b^2 + 2a^2 - 2ab = 0
<=> (a-b)(3a-b) = 0
=> a = b hoặc a = b/3
Mà b>a>0 => a = b/3
Thế vào A ta có: (b/3 - b) / (b/3 + b)
Rút gọn ta được: A = (1/3 - 1) / (1/3 + 1) = -1/2