K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

`7x*(1/7x - 2x^2 + 1)`

`= 7x*1/7x + 7x*(-2x^2) + 7x`

`= x^2 - 14x^3 + 7x`

`= -14x^3 + x^2 + 7x`

I don't now 

sorry 

...................

nha

27 tháng 7 2018

a)   \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2=0\)

\(\Leftrightarrow\)\(\left[\left(3x-1\right)+\left(2x-1\right)\right]^2=0\)

\(\Leftrightarrow\)\(\left(5x-2\right)^2=0\)

\(\Leftrightarrow\)\(5x-2=0\)

\(\Leftrightarrow\)\(x=\frac{2}{5}\)

Vậy...

b)  \(\left(7x+2\right)^2+\left(7x-2\right)^2-2\left(7x+2\right)\left(7x-2\right)=0\)

\(\Leftrightarrow\)\(\left[\left(7x+2\right)-\left(7x-2\right)\right]^2=0\)

\(\Leftrightarrow\)\(4^2=0\)  vô lí

Vậy pt vô nghiệm

8 tháng 11 2016

Thực hiện các phép đổi tương đương , ta đưa ( 1 ) về dạng :

\(\frac{x+4}{2x^2-5x+2}-\frac{x+4}{2x^2-7x+3}=0\)

\(\Leftrightarrow\left(x+4\right)\left(\frac{1}{2x^2-5x+2}-\frac{1}{2x^2-7x+3}\right)=0\)

\(\Leftrightarrow\frac{\left(x+4\right)\left(1-2x\right)}{\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)}=0\)

\(\Leftrightarrow\left(x+4\right)\left(1-2x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=\frac{1}{2}\end{array}\right.\)

Thữ vào mẫu thức : Với \(x=\frac{1}{2}\) thì \(2x^2-5x+2=0\)

Với \(x=-4\) thì \(\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)\ne0\)

Vậy phương trình ( 1 ) là cho nghiệm duy nhất là \(x=-4\)

 

13 tháng 12 2017

<=>7x(x-1)=(x-1)2

<=>7x(x-1)-(x-1)=0

<=>(x-1)(7x-x+1)=0

<=>(x-1)(6x+1)=0

<=>x-1=0 hoặc 6x+1=0

<=>x=1 hoặc 6x=-1

<=>x=1 hoặc x= -1/6

13 tháng 12 2017

\(7x^2-7x=x^2-2x+1\)

\(\Leftrightarrow7x\left(x-1\right)-\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow7x\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x-x+1\right)\)\(=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\6x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{6}\end{cases}}\)

Vậy.........

17 tháng 4 2018

\(a)\frac{1}{7}x-\frac{1}{2}x+\frac{5}{7}x=-\frac{1}{2}\)

\(\Rightarrow\left(\frac{1}{7}-\frac{1}{2}+\frac{5}{7}\right)x=-\frac{1}{2}\)

\(\Rightarrow\left(\frac{2}{14}-\frac{7}{14}+\frac{10}{14}\right)x=-\frac{1}{2}\)

\(\Rightarrow\frac{5}{14}x=-\frac{1}{2}\)

\(\Rightarrow x=-\frac{1}{2}:\frac{5}{14}\)

\(\Rightarrow x=-\frac{1}{2}.\frac{14}{5}\)

\(\Rightarrow x=-\frac{7}{5}\)

\(b)(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{49.51})x=-\frac{1}{3}\)

\(\Rightarrow\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{49}-\frac{1}{51}\right)x=-\frac{1}{3}\)

\(\Rightarrow\left(\frac{1}{11}-\frac{1}{51}\right)x=-\frac{1}{3}\)

\(\Rightarrow\left(\frac{51}{561}-\frac{11}{561}\right)x=-\frac{1}{3}\)

\(\Rightarrow\frac{40}{561}x=-\frac{1}{3}\)

\(\Rightarrow x=-\frac{1}{3}:\frac{40}{561}\)

\(\Rightarrow x=-\frac{1}{3}.\frac{561}{40}\)

\(\Rightarrow x=-\frac{187}{40}\)

Chúc bạn học tốt !!! 

15 tháng 1 2019

\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)

Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2

a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)

\(\Leftrightarrow2x^2+2-2x^2-2x=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1(nhận)

Vậy: S={1}

b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)

\(\Leftrightarrow6x^2-3x+4x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

\(\Leftrightarrow6x^2-6x+7x-7=0\)

\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)

d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)

Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)

\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)

\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)

28 tháng 5 2021

ĐK: ` x \ne 2/7`

`(2x+3)((3x+8)/(2-7x)+1)=(x-5)((3x+8)/(2-7x)+1)`

`<=> ((3x+8)(2-7x)+1)(2x+3-x+5)=0`

`<=> ((3x+8)/(2-7x)+1)(x+8)=0`

 \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x+8}{2-7x}=-1\\x+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-8\end{matrix}\right.\)

Vậy `S={5/2 ; -8}`.

28 tháng 5 2021

khó hiểu lắm bạn ơii:<

15 tháng 7 2021

a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)

<=> \(9x^2-9x+2=9x^2+6x+1\)

<=>  \(15x=1\) <=> \(x=\frac{1}{15}\)

b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)

<=> \(4x^2+3x-1=4x^2-12x+9\)

<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)

c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)

<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)

<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)

15 tháng 7 2021

d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)

<=> 16 - 9x2 = 12x - 9x2 - 3

<=> 12x = 19

<=> x = 19/12

e) x(x + 1)(x + 2)(x + 3) = 24

<=> (x2 + 3x)(x2 + 3x + 2) = 24

<=> (x2 + 3x)2  + 2(x2 + 3x) - 24 = 0

<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0

<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0

<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

g) (7x - 2)2 = (7x - 3)(7x + 2)

<=> 49x2 - 28x + 4 = 49x2 - 7x - 6

<=> 21x = 10 <=> x = 10/21