so sánh M và N
M=\(\frac{2013}{123456789}+\frac{2014}{987654321}\)
N=\(\frac{2014}{123456789}+\frac{2013}{987654321}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(A=\frac{2011}{123456789}+\frac{2011}{987654321}+\frac{1}{987654321}\)
\(B=\frac{2011}{123456789}+\frac{1}{123456789}+\frac{2011}{987654321}\)
Mặt khác
\(\frac{1}{987654321}< \frac{1}{123456789}\)
\(\Rightarrow\frac{2011}{123456789}+\frac{2011}{987654321}+\frac{1}{987654321}< \frac{2011}{123456789}+\frac{1}{123456789}+\frac{2011}{987654321}\)
=> A<B
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)
\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Vậy M>N
ta xét vế M
đầu tiên bạn tách 2014 ra ngoài
sau đó nhân 2 vào tử và mẫu , rồi tách 1/2 ra ta có 1007 .( ..........................)
bây giờ tính vế trong ngoặc và trong ngoặc <1
=> M>N
Ta có:
\(\frac{2013}{2014}>\frac{2013}{2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\)
\(\Rightarrow M>N\)
Ta có: \(N=\frac{2013+2014}{2014+2015}<1\);
\(M=\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013}{2015}+\frac{2014}{2015}=\frac{4027}{2015}>1\)
\(\Rightarrow A>B\)
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
Xét N có:
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta các số hạng của M và N có:
\(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\) (1)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\) (2)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\) (3)
Từ (1);(2);(3) => M > N
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015}\) (1)
\(\frac{2014}{2015}>\frac{2014}{2014+2015}\) (2)
ộng caác bất đẳng thứa (1) và (2) vào vế với vế:
\(\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\Rightarrow A>B\)
Ta co: \(M=\frac{2013}{123456789}+\frac{2014}{987654321}=\frac{2013}{123456789}+\frac{2013}{987654321}+\frac{1}{987654321}\)
\(N=\frac{2013}{123456789}+\frac{1}{123456789}+\frac{2013}{987654321}\)
ma \(\frac{1}{987654321}< \frac{1}{123456789}\) nen \(M< N\)
\(M=\frac{2013}{123456789}+\frac{2014}{987654321}\)
\(N=\frac{2014}{123456789}+\frac{2013}{987654321}\)
\(M=\frac{2014}{987654321}-\frac{1}{987654321}\)
\(N=\frac{2014}{123456789}-\frac{1}{123456789}\)
Ta thấy \(\frac{1}{123456789}>\frac{1}{987654321}\)
\(\Rightarrow M< N\)