K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

A = -4x2 + 8x - 3

A = -(4x2 - 8x + 3)

A = -[(2x)2 - 2.2x.2 + 4 - 1]

A = -[(2x - 2)2 - 1]

A = -(2x - 2)2 + 1

Vì \(-\left(2x-2\right)^2\le0\)

\(\Rightarrow-\left(2x-2\right)^2+1\le1\)

\(\Rightarrow Max_A=1\)

\(\Leftrightarrow\left(2x-2\right)^2=0\Leftrightarrow x=1\)

14 tháng 7 2016

toán 12 nha

8 tháng 5 2022

\(A=\dfrac{4\left(x^2+2x+3-3\right)+18}{x^2+2x+3}=\dfrac{4\left(x^2+2x+3\right)+6}{x^2+2x+3}=4+\dfrac{6}{\left(x+1\right)^2+2}\)

Ta có \(\left(x+1\right)^2+2\ge2\Rightarrow\dfrac{6}{\left(x+1\right)^2+2}\le3\Leftrightarrow4+\dfrac{6}{\left(x+1\right)^2+2}\le7\)

Dấu ''='' xảy ra khi x = -1 

 

=\(\dfrac{18}{7}\)

29 tháng 10 2021

b: Ta có: \(G=-4x^2+8x-2003\)

\(=-4\left(x^2-2x+\dfrac{2003}{4}\right)\)

\(=-4\left(x^2-2x+1+\dfrac{1999}{4}\right)\)

\(=-4\left(x-1\right)^2-1999\le-1999\forall x\)

Dấu '=' xảy ra khi x=1

31 tháng 10 2021

F=5-4x2+4

=(5+4)-4x2

= 9- 4x2

Vì 4x2 ≥0 => -4x2  ≤0 => 9-4x2 ≤9 ∀x

Dấu = xảy ra khi x=0

23 tháng 12 2023

a: \(-2x^2-8x+1\)

\(=-2x^2-8x-8+9\)

\(=-2\left(x^2+4x+4\right)+9\)

\(=-2\left(x+2\right)^2+9< =9\forall x\)

Dấu '=' xảy ra khi x+2=0

=>x=-2

b: \(-5x^2-y^2-4xy+4x+3\)

\(=\left(-4x^2-4xy-y^2\right)+\left(-x^2+4x-4\right)+7\)

\(=-\left(2x+y\right)^2-\left(x-2\right)^2+7< =7\forall x,y\)

Dấu '=' xảy ra khi 2x+y=0 và x-2=0

=>x=2 và y=-2x=-4

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

30 tháng 8 2021

a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(minA=-3\Leftrightarrow x=2\)

b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)

\(maxB=21\Leftrightarrow x=-4\)

c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)

\(minC=11\Leftrightarrow x=2\)

d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)

\(maxD=4\Leftrightarrow x=-1\)

30 tháng 8 2021

a) A = (x-2)^2 - 3 >= -3

--> A nhỏ nhất bằng -3

 <=> x = 2

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$