K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

Mấy hệ pt của bạn đọc không ra bạn ơi. B ghi lại đi nhấp vô chỗ \(\sum\) để ghi công thức nhé

8 tháng 6 2017

Viết lại đề mình sẽ giải cho bạn <3 

3 tháng 2 2019


Chọn A

9 tháng 6 2017

Tối nay nhé !!!!!!!! 9/6/17 :v

9 tháng 6 2017

Hiện giờ phương trình này hệ không có nghiệm ^^
Xem lại đề bạn nhé ^^ 
Mình nghĩ cho số 5 kia vào trong căn thì có nghiệm là (x;y)=(0;0);(....) ^^
#Rau 

4 tháng 7 2023

\(6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2+xy\right)\\ =6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2+5xy^3\\ =\left(6x^2y^2+8x^2y^2+5x^2y^2\right)+\left(-6xy^3+5xy^3\right)-8x^3\\ =19x^2y^2-xy^3-8x^3\)

Với `x=1/2;y=2` ta có :

 \(19x^2y^2-xy^3-8x^3\\ =19.\left(\dfrac{1}{2}\right)^2.2^2-\dfrac{1}{2}.2^3-8.2^3\\ =19.\dfrac{1}{4}.4-\dfrac{1}{2}.8-8.8\\ =19-4-64\\ =-49\)

a: Ta có: \(A=x^2-2xy+5y^2+4y+51\)

\(=x^2-2xy+y^2+4y^2+4y+1+50\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\forall x,y\)

Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)

27 tháng 9 2021

a) \(A=x^2-2xy+5y^2+4y+51=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+50=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\)

\(minA=50\Leftrightarrow x=y=-\dfrac{1}{2}\)

c) \(C=\dfrac{9}{-2x^2+4x-7}=\dfrac{9}{-2\left(x^2-2x+1\right)-5}=\dfrac{9}{-2\left(x-1\right)^2-5}\ge\dfrac{9}{-5}=-\dfrac{9}{5}\)

\(minC=-\dfrac{9}{5}\Leftrightarrow x=1\)

d) \(10x^2+4y^2-4xy+8x-4y+20=\left[4y^2-4y\left(x+1\right)+\left(x+1\right)^2\right]+\left(9x^2+6x+1\right)+18=\left(2y-x-1\right)^2+\left(3x+1\right)^2+18\ge18\)

\(minD=18\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

e) \(E=9x^2+2y^2+6xy-6x-8y+10=\left[9x^2+6x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-6x+9\right)=\left(3x+y-1\right)^2+\left(y-3\right)^2\ge0\)

\(minE=0\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=3\end{matrix}\right.\)