A =5/4- (3/8+1/ a) ÷4/5
Tính giá trị biểu thức khi a= 12
Tìm A để A =15/23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`5`
`a, -7/21 +(1+1/3)`
`=-7/21 + ( 3/3 + 1/3)`
`=-7/21+ 4/3`
`=-7/21+ 28/21`
`= 21/21`
`=1`
`b, 2/15 + ( 5/9 + (-6)/9)`
`= 2/15 + (-1/9)`
`= 1/45`
`c, (9-1/5+3/12) +(-3/4)`
`= ( 45/5-1/5 + 3/12)+(-3/4)`
`= ( 44/5 + 3/12)+(-3/4)`
`= 9,05 +(-0,75)`
`=8,3`
`6`
`x+7/8 =13/12`
`=>x= 13/12 -7/8`
`=>x=5/24`
`-------`
`-(-6)/12 -x=9/48`
`=> 6/12 -x=9/48`
`=>x= 6/12-9/48`
`=>x=5/16`
`---------`
`x+4/6 =5/25 -(-7)/15`
`=>x+4/6 =1/5 + 7/15`
`=> x+ 4/6=10/15`
`=>x=10/15 -4/6`
`=>x=0`
`----------`
`x+4/5 = 6/20 -(-7)/3`
`=>x+4/5 = 6/20 +7/3`
`=>x+4/5 = 79/30`
`=>x=79/30 -4/5`
`=>x= 79/30-24/30`
`=>x= 55/30`
`=>x= 11/6`
\(5)\)
\(A=\dfrac{-7}{21}+\left(1+\dfrac{1}{3}\right)\)
\(A=\dfrac{-7}{21}+\dfrac{4}{3}\)
\(A=\dfrac{-7}{21}+\dfrac{28}{21}\)
\(A=1\)
\(--------------\)
\(B=\dfrac{2}{15}+\left(\dfrac{5}{9}+\dfrac{-6}{9}\right)\)
\(B=\dfrac{2}{15}+\dfrac{-1}{9}\)
\(B=\dfrac{18}{135}+\dfrac{-15}{135}\)
\(B=\dfrac{1}{45}\)
\(------------\)
\(C=9-\dfrac{1}{5}+\dfrac{3}{12}+\dfrac{-3}{4}\)
\(C=\dfrac{44}{5}+\dfrac{3}{12}+\dfrac{-3}{4}\)
\(C=\dfrac{528}{60}+\dfrac{15}{60}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-15}{20}\)
\(C=\dfrac{83}{10}\)
\(6)\)
\(a)\) \(x+\dfrac{7}{8}=\dfrac{13}{12}\)
\(x=\dfrac{13}{12}-\dfrac{7}{8}\)
\(x=\dfrac{104}{96}-\dfrac{84}{96}\)
\(x=\dfrac{5}{24}\)
\(b)\) \(\dfrac{-6}{12}-x=\dfrac{9}{48}\)
\(\dfrac{-1}{2}-x=\dfrac{3}{16}\)
\(x=\dfrac{-1}{2}-\dfrac{3}{16}\)
\(x=\dfrac{-8}{16}-\dfrac{3}{16}\)
\(x=\dfrac{-11}{16}\)
\(c)\) \(x+\dfrac{4}{6}=\dfrac{5}{25}-\left(-\dfrac{7}{15}\right)\)
\(x+\dfrac{4}{6}=\dfrac{5}{25}+\dfrac{7}{15}\)
\(x+\dfrac{4}{6}=\dfrac{75}{375}+\dfrac{105}{375}\)
\(x+\dfrac{4}{6}=\dfrac{12}{25}\)
\(x=\dfrac{12}{25}-\dfrac{4}{6}\)
\(x=\dfrac{72}{150}-\dfrac{100}{150}\)
\(x=\dfrac{-14}{75}\)
\(d)\) \(x+\dfrac{4}{5}=\dfrac{6}{20}-\left(-\dfrac{7}{3}\right)\)
\(x+\dfrac{4}{5}=\dfrac{6}{20}+\dfrac{7}{3}\)
\(x+\dfrac{4}{5}=\dfrac{18}{60}+\dfrac{140}{60}\)
\(x+\dfrac{4}{5}=\dfrac{79}{30}\)
\(x=\dfrac{79}{30}-\dfrac{4}{5}\)
\(x=\dfrac{79}{30}-\dfrac{24}{30}\)
\(x=\dfrac{11}{6}\)
a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}
Thay x = 2, ta có B không tồn tại
Thay x = -1, ta có B = \(\dfrac{1}{3}\)
b)ĐKXĐ:x ≠ 2,-2
Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x
Do đó không tồn tại x thỏa mãn đề bài
a) Ta có:
C = 5/18 + 8/19 - 7/21 + (-10/36 + 11/19 + 1/3) - 5/8
C = 5/18 + 8/19 - 1/3 - 5/18 + 11/19 + 1/3 - 5/8
C = (5/18 - 5/18) + (8/19 + 11/19) - (1/3 - 1/3) - 5/8
C = 1 - 5/8
c = 3/8
b) F = 15/14 - (17/23 - 80/87 + 5/4) + (17/23 - 15/14 + 1/4)
F = 15/14 - 17/23 + 80/87 - 5/4 + 17/23 - 15/14 + 1/4
F = (15/14 - 15/14) - (17/23 - 17/23) + 80/87 - (5/4 - 1/4)
F = 80/87 - 1
F = -7/87
c) G = 1/25 - 4/27 + (-23/27 + -1/25 - 5/43) + 5/43 - 4/7
G = 1/25 - 4/27 - 23/27 - 1/25 - 5/43 + 5/43 - 4/7
G = (1/25 - 1/25) - (4/27 + 23/27) - (5/43 - 5/43) - 4/7
G = -1 - 4/7 = -11/7
a, 15 . { 32 : [ 6 - 5 + 5 ( 9 : 3 ) ] + 3 } - 2018 0
= 15.{32:[1+15]+3}–1
= 15.5–1
= 74
b, 25 . { 2 7 : [ 12 - 4 + 2 2 . 16 : 2 3 ] - 2 4 }
= 25.{128:[8+4.2]–16}
= 25.24
= 600
c, 2019 . { 101 - 1000 : [ 2 2 . 2 3 + 5 6 : 5 3 - 6 2 : 11 - 2018 0 ] }
= 2019.{101–1000:[(32+125–36):11–1]}
= 2019.{101–1000:[121:11–1]}
= 2019.{101–1000:10}
= 2019.1
= 2019
Bài 2:
a) \(A=x^2+6\ge6>0\forall x\in R\)
b) \(B=\left(5-x\right)\left(x+8\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)
\(A=\dfrac{5}{4}-\left(\dfrac{3}{8}+\dfrac{1}{a}\right):\dfrac{4}{5}\) \(\left(a\ne0\right)\)
Tại a = 12 biểu thức \(A=\dfrac{5}{4}-\left(\dfrac{3}{8}+\dfrac{1}{12}\right):\dfrac{4}{5}=\dfrac{5}{4}-\dfrac{11}{24}:\dfrac{4}{5}=\dfrac{5}{4}-\dfrac{11}{24}.\dfrac{5}{4}=\dfrac{5}{4}-\dfrac{55}{96}=\dfrac{65}{96}\)
Để \(A=\dfrac{15}{23}< =>\dfrac{5}{4}-\left(\dfrac{3}{8}+\dfrac{1}{a}\right):\dfrac{4}{5}=\dfrac{15}{23}\)
\(\Leftrightarrow\left(\dfrac{3}{8}+\dfrac{1}{a}\right):\dfrac{4}{5}=\dfrac{55}{92}< =>\dfrac{3}{8}+\dfrac{1}{a}=\dfrac{11}{23}< =>\dfrac{1}{a}=\dfrac{19}{184}< =>a=\dfrac{184}{19}\)
Thay \(a=12\) vào A ta có:
\(A=\dfrac{5}{4}-\left(\dfrac{3}{8}+\dfrac{1}{12}\right):\dfrac{4}{5}=\dfrac{65}{96}\)
Vậy:
____________________
Ta có:
\(A=\dfrac{15}{23}\) khi \(\dfrac{5}{4}-\left(\dfrac{3}{8}+\dfrac{1}{a}\right):\dfrac{4}{5}=\dfrac{15}{23}\)
\(\Rightarrow\left(\dfrac{3}{8}+\dfrac{1}{a}\right)\cdot\dfrac{5}{4}=\dfrac{5}{4}-\dfrac{15}{23}\)
\(\Rightarrow\dfrac{3}{8}+\dfrac{1}{a}=\dfrac{55}{92}:\dfrac{5}{4}\)
\(\Rightarrow\dfrac{3}{8}+\dfrac{1}{a}=\dfrac{11}{23}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{11}{184}\)
\(\Rightarrow a=\dfrac{1\cdot184}{11}=\dfrac{184}{11}\)