tìm a,x sao cho : a,x thuộc N*
thỏa mãn x2 + 16 = 25a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath
y=\(\frac{1}{2}\)x =) x=2y
x+2y=2
=) 2y+2y=2
=) y=\(\frac{1}{2}\)
=) x=1
a) 2xy-6x+y=13
<=>2x(y-3)+(y-3)=10
<=>(y-3)(2x+1)=10
=>y-3 và 2x+1 thuộc Ư(10)
=>Ư(10)={-1;1;-2;2;-5;5;-10;10}
Vì 2x+1 luôn lẻ
=>2x+1={-1;1;-5;5}
Ta có bảng sau:
2x+1 | -1 | 1 | -5 | 5 |
y-3 | -10 | 10 | -2 | 2 |
x | -1 | 0 | -3 | 2 |
y | -7 | 13 | 1 | 5 |
NX | loại | tm | loại | tm |
Vậy các cặp gt (x;y) thỏa mãn là:
(0;13); (2;5)
b) 2xy+2y-x=16
<=>x(2y-1)+(2y-1)=15
<=>(2y-1)(x+1)=15
=>2y-1 và x+1 thuộc Ư(15)
=>Ư(15)={-1;1;-3;3;-5;5;-15;15}
Ta có bảng sau:
x+1 | -1 | 1 | -3 | 3 | -5 | 5 | -15 | 15 |
2y-1 | -15 | 15 | -5 | 5 | -3 | 3 | -1 | 1 |
x | -2 | 0 | -4 | 2 | -6 | 4 | -16 | 14 |
y | -7 | 8 | -2 | 3 | -1 | 2 | 0 | 1 |
NX | loại | tm | loại | tm | loại | tm | loại | tm |
Vậy các cặp gt (x;y) thỏa mãn là:
(0;8); (2;3); (4;2); (14;1)
b)\(2n-1⋮n+1\)\(\left(n\inℤ\right)\)
\(\Rightarrow2n+2-3⋮n+1\)
\(\Rightarrow2.\left(n+1\right)-3⋮n+1\)mà\(2.\left(n+1\right)⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n+1\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{-2;0;-4;2\right\}\)
Vậy \(n\in\left\{-2;0;-4;2\right\}\)
Chúc bạn học tốt !
\(\Delta=1-4\left(-m-2\right)\ge0\Leftrightarrow m\ge-\dfrac{9}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-m-2\end{matrix}\right.\)
\(x_1^2-x_1x_2-2x_2=16\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)-2x_1x_2-2x_2=16\)
\(\Leftrightarrow-x_1-2\left(-m-2\right)-2x_2=16\)
\(\Leftrightarrow x_1+2x_2=2m-12\)
\(\Rightarrow x_1+x_2+x_2=2m-12\)
\(\Leftrightarrow-1+x_2=2m-12\Rightarrow x_2=2m-11\Rightarrow x_1=-1-x_2=-2m+10\)
Lại có: \(x_1x_2=-m-2\)
\(\Rightarrow\left(-2m+10\right)\left(2m-11\right)=-m-2\)
\(\Leftrightarrow4m^2-43m+108=0\Rightarrow\left[{}\begin{matrix}m=4\\m=\dfrac{27}{4}\end{matrix}\right.\)
Lời giải:
$x^2+16=25^a=(5^a)^2$
$\Rightarrow 16=(5^a)^2-x^2=(5^a-x)(5^a+x)$
$\Rightaarrow 5^a+x\in Ư(16)$
Mà $5^a+x\geq 2$ với mọi $a,x\in\mathbb{N}^*$
$\Rightarrow 5^a+x\in\left\{2; 4;8;16\right\}$
$\Rightarrow 5^a-x\in\left\{8; 4; 2; 1\right\}$
Vì $5^a+x> 5^a-x$ nên $(5^a+x, 5^a-x)\in \left\{(8,2), (16,1)\right\}$
$\Rightarrow (a,x)=(1,3)$