K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ACBE có

M là trung điểm chung của AB và CE

=>ACBE là hbh

=>AC=BE và AE//BC

b: Xét tứ giác AFCB có

N là trung điểm chung của AC và FB

=>AFCB là hình bình hành

=>AF//BC và AF=BC

c: AE=BC

AF=BC

=>AE=AF

d: AE//BC

AF//BC

=>E,A,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

27 tháng 10 2021

a: Xét tứ giác ABCD có 

N là trung điểm của AC
N là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

13 tháng 12 2021

có cách nào khác ko ạ

13 tháng 12 2021

a: Xét tứ giác ADCB có 

N là trung điểm của AC

N là trung điểm của DB

Do đó: ADCB là hình bình hành

Suy ra: DA=BC

13 tháng 12 2017

xét tam giác ame và tam giác bmc

me=mc (gt)

góc ema= góc bmc (đối đỉnh)

am=bm( m là trung điểm của ab)

=> tam giác ame= tam giác bmc(c.g.c)

=> góc eam= góc cbm ( 2 cạnh tương ứng)

mà góc eam và góc cbm SLT

=>ae //bc

xét tam giác afn và tam giác cbn

fn=bn (gt)

góc an f= góc bnc (đ đ)

an=cn ( n là trung điểm của ac)

=> tam giác a fn= tam giác cbn (c.g.c)

=> a f=cb (2 cạnh t ung)

mà ae=cb (tam giác ame= tam giác bmc)

=>a f= ae (=cb)

=> a là trung điểm của e f

a,b: Xét tứ giác AECB có

N là trung điểm chung của AC,EB

nên AECB là hình bình hành

=>AE//BC và AE=BC

c: Xét tứ giác AFBC có

M là trung điểm chung của AB và FC

nên AFBC là hình bình hành

=>AF//BC

=>F,A,E thẳng hàng

11 tháng 12 2021

CÍU

 

11 tháng 12 2021

Đợi mình tí!

24 tháng 10 2021

a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)

Do đó \(AD=BC\)

b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)

Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC

c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC

Mà AE//BC nên A,D,E thẳng hàng

Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)

Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)

Vậy A là trung điểm DE

26 tháng 11 2017

Xét \(\Delta BNC\)và \(\Delta ANE\)có :

AN=NC(GT)

NE=NB(GT)

GÓC ANE = GÓC BNC (ĐỐI ĐỈNH)

\(\Rightarrow\Delta BNC=\Delta ANE\left(C-G-C\right)\)

=>BC=AE(2 CẠNH TƯƠNG ỨNG )(1)

CHỨNG MINH TƯƠNG TỰ TA CÓ:

FA=CB(2)

TỪ (1) VÀ (2) =>AE=FA (ĐPCM)