K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\left(1-\sqrt{5}\right)\)

\(=\sqrt{5}-2-\sqrt{5}+5\)

=3

 

17 tháng 12 2023

\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7\)

\(=16-8\sqrt{7}+7=23-8\sqrt{7}\)

\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

\(=\left|\sqrt{5}-2\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}=-2\)

\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)

\(=\dfrac{\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)

\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-1}{2-1}=2\)

\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{1}{2}\sqrt{6}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{1}{2}-2=-\dfrac{3}{2}=-1,5\)

17 tháng 7 2019

\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

Ta có

:\(VT=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=|2-\sqrt{5}|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)

\(=-2=VP\left(đpcm\right)\)

\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)

Ta có:

\(VT=\frac{\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(=\frac{2+\sqrt{2}+\sqrt{2}+1}{\sqrt{2}^2-1^2}\)

\(=\frac{3+2\sqrt{2}}{2-1}\)

\(=3+2\sqrt{2}=VP\left(đpcm\right)\)

17 tháng 7 2019

c,Bạn xem lại đề

\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)

Ta có:

\(VT=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)

\(=\sqrt{\frac{2^2}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{2^2}{\left(2+\sqrt{5}\right)^2}}\)

\(=\frac{2}{|2-\sqrt{5}|}-\frac{2}{|2+\sqrt{5}|}\)

\(=\frac{2\left(2+\sqrt{5}\right)}{\left(\sqrt{5}-2\right)\left(2+\sqrt{5}\right)}-\frac{2\left(\sqrt{5}-2\right)}{\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)}\)

\(=\frac{4+2\sqrt{5}-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)

\(=\frac{8}{5-4}\)

\(=8=VP\left(đpcm\right)\)

a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)

b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)

\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)

\(=-60-144\sqrt{2}+30\sqrt{2}+144\)

\(=84-114\sqrt{2}\)

24 tháng 9 2021

\(a,=2\sqrt{6}-4+\sqrt{\left(3-\sqrt{6}\right)^2}=2\sqrt{6}-4+3-\sqrt{6}=\sqrt{6}-1\\ b,=3-2\sqrt{2}+\sqrt{\left(3\sqrt{2}+1\right)^2}=3-2\sqrt{2}+3\sqrt{2}+1=4+\sqrt{2}\\ c,=\sqrt{\left(\sqrt{5}+2\right)^2}-\left(\sqrt{5}-1\right)=\sqrt{5}+2-\sqrt{5}+1=3\)

24 tháng 9 2021

a) \(=2\sqrt{6}-4+\sqrt{\left(3-\sqrt{6}\right)^2}=2\sqrt{6}-4+3-\sqrt{6}=-1+\sqrt{6}\)

b) \(=\left|3-2\sqrt{2}\right|+\sqrt{\left(3\sqrt{2}+1\right)^2}=3-2\sqrt{2}+3\sqrt{2}+1=4+\sqrt{2}\)

c) \(=\sqrt{\left(\sqrt{5}+2\right)^2}-\left|1-\sqrt{5}\right|=\sqrt{5}+2+1-\sqrt{5}=3\)