Cho đường tròn (O;R) và một điểm M ở ngoài đường tròn(O;R).Trên dường thẳng vuông góc với OM tại M lấy một điểm N bất kỳ.Từ N vẽ hai tiếp tuyến NA,NB đến đường tròn (O) (A,B là các tiếp điểm) a/ Chứng minh :5 điểm O,A,B,M,N cùng nằm trên một đườg tròn b/Gọi I là giao điểm của AB với OM.Tính tích OI.OM theo R c/Từ I kẻ đường thẳng vuông góc với OM cắt (O) tại K.Cm:MK là tiếp tuyến của (O) d/AM cắt đường tròn (O) tại C (C khác A).Chứng minh :4 điểm O,A,I,C cùng nằm trên một đường tròn
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
a) Nối O với N. Ta có \(\widehat{OAN}\)=\(\widehat{OBN}\)=\(\widehat{ONM}\)=90° →các góc này nội tiếp chắn nửa đường tròn đường kính ON →O,A,B,N,M cùng nằm trên đường tròn đường kính ON.
b) Nối A với M. Xét tứ giác nội tiếp OANB(chứng minhnội tiếp trước)ta có \(\widehat{AMO}\)=\(\frac{1}{2}\)\(\widebat{OA}\);\(\widehat{OAB}\)=\(\frac{1}{2}\)\(\widebat{OB}\) mà