K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

\(y=\sqrt{x-6}+\sqrt{2-x}\)

\(\Rightarrow y^2=\left(\sqrt{x-6}+\sqrt{2-x}\right)^2=x-6+2-x+2\cdot\sqrt{x-6}\cdot\sqrt{2-x}\)

\(\Leftrightarrow y^2=-4+2\cdot\sqrt{\left(x-6\right)\left(2-x\right)}=-4+2\cdot\sqrt{2x-x^2-12+6x}\)

\(\Leftrightarrow y^2=-4+2\cdot\sqrt{4-\left(x^2-8x+16\right)}=-4+2\cdot\sqrt{2^2-\left(x-4\right)^2}\)

\(\Leftrightarrow y^2=-4+2\cdot\sqrt{\left(2+x-4\right)\left(2-x+4\right)}=-4+2\cdot\sqrt{\left(x-2\right)\left(6-x\right)}\)

\(\Rightarrow y=\sqrt{-4+2\cdot\sqrt{\left(x-2\right)\left(6-x\right)}}\Rightarrow-4+2\cdot\sqrt{\left(x-2\right)\left(6-x\right)}\ge0\)( ĐỂ Y CÓ GIÁ TRỊ KHI LẤY CĂN )

\(\Leftrightarrow2\cdot\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\Leftrightarrow\sqrt{\left(x-2\right)\left(6-x\right)}\ge2\)

TA ĐƯỢC GIÁ TRỊ NHỎ NHẤT CỦA Y = 2 ( khi x = 4 )

Còn về giá trị lớn nhất thì mình tìm không được vì hiếm khi một biểu thức có thể tìm được cả MIN và MAX

28 tháng 5 2017

Tại chỉ dùng kiến thức lớp 8 nên hơi rối rắm nha! ^.^

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

15 tháng 10 2019

max=căn 66

áp dụng bất đẳng thức cô si là ra 

tích cho nha

15 tháng 10 2019

Áp dụng bđt côsi ta có: 

\(\hept{\begin{cases}\sqrt{\left(x+y\right)4}\le\frac{x+y+4}{2}\left(1\right)\\\sqrt{\left(z+y\right)4}\le\frac{y+z+4}{2}\left(2\right)\\\sqrt{\left(z+x\right)4}\le\frac{z+x+4}{2}\left(3\right)\end{cases}}\)

Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:

\(2P\le x+y+z+6=12\)

\(\Leftrightarrow p\le6\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=2\)

Vậy \(P_{max}=6\)\(\Leftrightarrow x=y=z=2\)

9 tháng 8 2020

100x10=

22 tháng 5 2021

ĐK: Biểu thức xác định với mọi `x`.

`y_(min) <=> (\sqrt(2-cos(x-π/6))+3)_(max) <=> (cos(x-π/6))_(max)`

`<=> cos(x-π/6)=1 <=> x-π/6=k2π <=> x = π/6+k2π ( k \in ZZ)`.

`=> y_(min) = 1`

`y_(max) <=> (\sqrt(2-cos(x-π/6))+3)_(min) <=> (cos(x-π/6))_(min)`

`<=> cos(x-π/6)=-1 <=> x -π/6= π+k2π <=> x = (7π)/6+k2π (k \in ZZ)`

`=> y_(max) = (6-2\sqrt3)/3`.

22 tháng 5 2021

Vội vàng quá r bạn, y max mà lại bé hơn y min ư?

17 tháng 3 2017

Bài này ko khó. Bạn nên tự làm!

18 tháng 3 2017

Ta có điều kiện \(\hept{\begin{cases}y\ge-6\\x\ge-6\\x+y\ge0\end{cases}}\)

Theo đề bài thì: \(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)

\(\Leftrightarrow P^2\le\left(1^2+1^2\right)\left(x+y+12\right)\)

 \(\Leftrightarrow P^2-2P-24\ge0\)

\(\Leftrightarrow-4\le P\le6\)

\(\Leftrightarrow-4< P\le6\left(1\right)\)

Ta lại có: 

\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)

\(\Leftrightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow P^2-P-12=2\sqrt{\left(x+6\right)\left(y+6\right)}\ge0\)

\(\Leftrightarrow\left(P+3\right)\left(P-4\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}P\le-3\left(l\right)\\P\ge4\left(2\right)\end{cases}}\)

Từ (1) và (2) \(\Rightarrow4\le P\le6\)

Vậy GTNN là \(P=4\)đạt được khi \(\hept{\begin{cases}x=-6\\y=10\end{cases}}or\hept{\begin{cases}x=10\\y=-6\end{cases}}\)

GTLN là \(P=6\) đạt được khi \(x=y=3\)