K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

 A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z) 
Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b 
ta có: 
(x + y + z)^2/4 ≥ x(y + z) 
(x+ y +z)^2/4 ≥ z(y + z) 
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27 
=>Giá trị lớn nhất của  = 27 sẽ xảy ra khi có các trường hợp: 
{x = y + z 
{z = y + z 
Vậy y = 0 và x = z = 3

4 tháng 9 2018

\(A=xy+2yz+3zx=x\left(6-x-z\right)+2\left(6-x-z\right)+3zx\)

\(=-x^2+6x-2z^2+12z=\left(-x^2+6x-9\right)+\left(-2z^2+12z-18\right)+27\)

\(=27-\left(x-3\right)^2-2\left(z-3\right)^2\le27\)

27 tháng 4 2020

từ giả thiết ta có : z = 6 - x - y

Ta có : \(A=xy+z\left(2y+3x\right)=xy+\left(6-x-y\right)\left(2y+3x\right)\)

\(=-3x^2-2y^2-4xy+18x+12y\)

Do đó : \(3A=-9x^2-6y^2-12xy+54x+36y=-9x^2-6x\left(2y-9\right)-6y^2+36y\)

\(=-\left(3x+2y-9\right)^2-2y^2+81\le81\)

\(\Rightarrow A\le27\)

Vậy giá trị lớn nhất của A là 27 \(\Leftrightarrow\hept{\begin{cases}3x+2y-9=0\\y=0\end{cases}\Leftrightarrow x=3;y=0;z=3}\)

14 tháng 2 2022

\(xy+2yz+3zx=xy+zx+2yz+2zx=x\left(y+z\right)+2z\left(y+x\right)=x.\left(-x\right)+2z.\left(-z\right)=-x^2-2z^2\le0\)-Dấu bằng xảy ra \(\Leftrightarrow x=y=z=0\)

8 tháng 5 2018

Đặt \(a=\frac{9+3\sqrt{17}}{4}\) và  \(b=\frac{3+\sqrt{17}}{4}\)khi đó \(a=3b\)và  \(a+1=2b^2=c=\frac{13+3\sqrt{17}}{4}\)

Áp dụng BĐT AM-GM ta thu được các BĐT sau:  \(x^2+b^2y^2\ge2bxy\)

                                                                         \(by^2+z^2\ge2byz\)

                                                                         \(a\left(z^2+x^2\right)\ge2azx\)

Cộng các vế theo các vế các BĐT thu được để có: 

\(\left(a+1\right)\left(x^2+z^2\right)+2b^2y^2\ge2b\left(xy+yz\right)+2azx\)

Hay \(c\left(x^2+y^2+z^2\right)\ge2b\left(xy+yz+3zx\right)\). Từ đó ta thay các giá trị của \(xy+yz+3zx\); b và c để có được

\(P=x^2+y^2+z^2\ge\frac{\sqrt{17}-3}{2}\)

Cuối cùng, với \(x=z=\frac{1}{\sqrt[4]{17}}\)và \(y=\sqrt{\frac{13\sqrt{17}-51}{34}}\)( Thỏa mãn giả thiết )  thì \(P=\frac{\sqrt{17}-3}{2}\)

Nên ta kết luận \(\frac{\sqrt{17}-3}{2}\)là giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2\)

8 tháng 10 2017

de sai roi em oi

o phuong trinh 2 can them +yz nhe

NV
9 tháng 1 2021

\(A=3yz+\left(4-y-z\right)\left(y+2z\right)\)

\(A=-y^2+4y-2z^2+8z\)

\(A=-\left(y-2\right)^2-2\left(z-2\right)^2+12\le12\)

\(A_{max}=12\) khi \(\left(x;y;z\right)=\left(0;2;2\right)\)

9 tháng 1 2021

Alooo. Đợt trước anh bảo đợi bảng xếp hạng ổn định rồi tổ chức event jj đó "đền bù" cho box toán mà sao em vừa lót dép ngồi hóng vừa ôn thi mãi từ bấy đến giờ vẫn chẳng thấy đâu zợ?:'(

22 tháng 12 2021

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2019^2}{4}\)

Dấu = xảy ra khi \(x=y=\dfrac{2019}{2}\)

22 tháng 12 2021

\(P_{max}=1019090\)

29 tháng 8 2016

với mọi x, y, z ta có: 
(x-y)^2 +(y-z)^2+ (z-x)^2>=0 
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 
<=>(x+y+z)^2 >= 3(x+y+z) 
<=>[(x+y+z)^2]/3 >= xy+yz+ zx 
=>xy +yz + zx <=3 
dấu = xảy ra khi x=y=z =1

9 tháng 7 2017

ai tích mình tích lại nhưng phải lên điểm mình tích gấp đôi

1 tháng 9 2018

b,Ap dung bdt cauchy schwarz dang engel ta co

\(B=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}>=\frac{\left(x+y+z\right)^2}{3}=\frac{a^2}{3}\)

xay ra dau = khi x=y=z=a/3