Cho x,y thỏa mãn ( \(\sqrt{2+x^2}\) - x) (y + \(\sqrt{2+y^2}\)) = 2. CMR: x=y
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(GT\Rightarrow\left(\sqrt{2+x^2}-x\right)\left(\sqrt{2+x^2}+x\right)\left(\sqrt{2+y^2}+y\right)=2\left(\sqrt{2+x^2}+x\right)\)
\(\Leftrightarrow2\left(\sqrt{2+y^2}+y\right)=2\left(\sqrt{2+x^2}+x\right)\)
\(\Leftrightarrow\sqrt{2+x^2}+x-\sqrt{2+y^2}-y=0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)\left(x+y\right)}{\sqrt{2+x^2}+\sqrt{2+y^2}}+\left(x-y\right)=0\)
TH1:\(x-y=0\Leftrightarrow x=y\left(đpcm\right)\)
TH2: \(x+y+\sqrt{2+x^2}+\sqrt{2+y^2}=0\)
Ta có: \(x\ge-\sqrt{x^2}\); \(y\ge-\sqrt{y^2}\)
\(\Rightarrow x+y+\sqrt{2+x^2}+\sqrt{2+y^2}\ge\sqrt{2+x^2}-\sqrt{x^2}+\sqrt{2+y^2}-\sqrt{y^2}>0\)
Do vậy TH2 không có x,y tm
Vậy ta có đpcm