K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017
Hãy thử như sau:
  • Sử dụng các cách diễn giải khác hoặc ký hiệu khác
  • Nhập toàn bộ từ thay vì chữ viết tắt
  • Tránh trộn các ký hiệu toán học và các ký hiệu khác
  • Kiểm tra chính tả của bạn
  • Cung cấp cho bạn đầu vào bằng tiếng Anh
Các mẹo khác để sử dụng Wolfram Alpha:
  • Wolfram | Alpha trả lời các câu hỏi cụ thể thay vì giải thích các chủ đề chung
    Nhập "2 chén đường", chứ không phải "thông tin dinh dưỡng"
  • Bạn chỉ có thể nhận được câu trả lời về sự thật khách quan
    Hãy thử "ngọn núi cao nhất", không phải "bức tranh đẹp nhất"
  • Chỉ có điều Wolfram | Alpha biết đến
    Hỏi "có bao nhiêu người ở Mauritania", chứ không phải "bao nhiêu quái vật ở Loch Ness"
  • Chỉ có sẵn thông tin công khai
    Yêu cầu "GDP của Pháp", chứ không phải "điện thoại nhà của Michael Jordan"

Đề:
X ^ 4 - 2 x ^ 3 + x - sqrt (2) (x ^ 2 - x) = 0
 
 
 
 

Ta được hình sau:

 

Mã mở

 
 
 
Thay thế:
- (x - 1) x (-x ^ 2 + x + sqrt (2) + 1) = 0

Mã mở

 
 
(X - 1) x (x ^ 2 - x - sqrt (2) - 1) = 0

Mã mở

 
 
X ^ 4 - 2 x ^ 3 - sqrt (2) x ^ 2 + sqrt (2) x + x = 0
 
 
 

Các giải pháp:

  • Các mẫu gần đúng
  • Giải pháp từng bước
X = 0

Mã mở

 
 
X = 1
 
 
X = 1/2 (1 - sqrt (5 + 4 sqrt (2)))
 
phóng toDữ liệuTùy chỉnhMột PlaintextTương tác
X = 1/2 (1 + sqrt (5 + 4 sqrt (2)))
27 tháng 5 2017

Câu dưới cùng là: \(\frac{1}{2}\left(1+\sqrt{5+4\sqrt{2}}\right)\)

Mình viết bị che

26 tháng 2 2022

cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?

NV
28 tháng 3 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)

\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\) 

\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)

\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết

28 tháng 3 2021

Mk sửa lại đề rồi. Bạn giúp mk giải vs

27 tháng 4 2020

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

25 tháng 4 2020

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!

NV
20 tháng 7 2021

c.

ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)

\(\Leftrightarrow x+4-2\sqrt[]{\left(\dfrac{x+2}{x-1}\right)^2\left(\dfrac{x-1}{x+2}\right)}=0\)

\(\Leftrightarrow x+4-2\sqrt[]{\dfrac{x+2}{x-1}}=0\)

\(\Leftrightarrow x+4=2\sqrt[]{\dfrac{x+2}{x-1}}\) (\(x\ge-4\))

\(\Leftrightarrow x^2+8x+16=\dfrac{4\left(x+2\right)}{x-1}\)

\(\Rightarrow x^3+7x^2+4x-24=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+4x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2+2\sqrt{3}\\x=-2-2\sqrt{3}\left(loại\right)\end{matrix}\right.\)

NV
20 tháng 7 2021

a.

\(\Leftrightarrow2x^2-11x+21=3\sqrt[3]{4\left(x-1\right)}\)

Do \(2x^2-11x+21=2\left(x-\dfrac{11}{4}\right)^2+\dfrac{47}{8}>0\Rightarrow3\sqrt[3]{4\left(x-1\right)}>0\Rightarrow x-1>0\)

Ta có:

\(VT=2x^2-11x+21-3\sqrt[3]{4x-4}=2\left(x^2-6x+9\right)+x+3-3\sqrt[3]{4\left(x-1\right)}\)

\(=2\left(x-3\right)^2+x+3-3\sqrt[3]{4\left(x-1\right)}\)

\(\Rightarrow VT\ge x+3-3\sqrt[3]{4\left(x-1\right)}=\left(x-1\right)+2+2-3\sqrt[3]{4\left(x-1\right)}\)

\(\Rightarrow VT\ge3\sqrt[3]{\left(x-1\right).2.2}-3\sqrt[3]{4\left(x-1\right)}=0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x-1=2\\\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)

31 tháng 8 2020

1. \(x^3-6x^2+10x-4=0\)

<=> \(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)

<=>  \(\left(x-2\right)\left(x^2-4x+2\right)=0\)

<=> \(\orbr{\begin{cases}x=2\\x^2-4x+2=0\left(1\right)\end{cases}}\)

Giải pt (1): \(\Delta=\left(-4\right)^2-4.2=8>0\)

=> pt (1) có 2 nghiệm: \(x_1=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)

\(x_2=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)

31 tháng 8 2020

1) Ta có: \(x^3-6x^2+10x-4=0\)

       \(\Leftrightarrow\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)

       \(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-2\right)=0\)

       \(\Leftrightarrow\left(x^2-4x+2\right)\left(x-2\right)=0\)

   + \(x-2=0\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)

   + \(x^2-4x+2=0\)\(\Leftrightarrow\)\(\left(x^2-4x+4\right)-2=0\)

                                             \(\Leftrightarrow\)\(\left(x-2\right)^2=2\)

                                             \(\Leftrightarrow\)\(x-2=\pm\sqrt{2}\)

                                             \(\Leftrightarrow\)\(\orbr{\begin{cases}x=2+\sqrt{2}\approx3,4142\left(TM\right)\\x=2-\sqrt{2}\approx0,5858\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{0,5858;2;3,4142\right\}\)