cmr :2^48-1 chia het cho 97
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì trong 4 số tự nhiên chẵn có ít nhất 1 số chia hết cho 4
Và 2 số còn lại chia hết cho 2
=> Chia hết cho 2 x 2 x 4 = 16
Mà trong 3 số đó phải có 1 số chia hết cho 3
= > Tích chia hết cho : 3 . 16 = 48
=> Tích chia hết cho 48
c. Ta có 384 = 27.3
Tích 4 số chẵn liên tiếp sẽ có dạng 24.n.(n+1).(n+2).(n+3)
Ta cần chứng minh tích n.(n+1).(n+2).(n+3) chia hết cho 23.3 hay chia hết cho 8 và 3 (vì 8 và 3 là số nguyên tố cùng nhau)
tick mình nha bạn
Nhưng bạn Khách vẫn đang còn bỏ sót trong 4 số tn chẵn nhưng phải liên tiếp
đề sai : đề thật nè Chứng minh rằng m^3+20m chia hết cho 48
m = 2k thì
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5)
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong.
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2
Vậy k(k^2 + 5) chia hết cho 2
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3
Vậy k(k^2 + 5) chia hết cho 3
=>dpcm
tk nha bạn
thank you bạn
(^_^)
a)
Nếu n lẻ thì (n+1) chẵn => (n+1)x(n+8) chia hết cho 2
Nếu n chẵn thì (n+8) chẵn => (n+1)x(n+8) chia hết cho 2
Nếu n = 0 => 1 x 8 = 8 chia hết cho 2
b)
n^2 + n = n x ( n + 1 )
mà n và n+1 là 2 số liên tiếp => có một số chẵn => chia hết cho 2
a) \(A=\left(n+1\right)\left(n+8\right)\)
Nếu: \(n=2k\)thì: \(A\)\(⋮\)\(2\)
Nếu: \(n=2k+1\)thì: \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=> \(A\)\(⋮\)\(2\)
Vậy A chia hết cho 2
b) \(B=n^2+n=n\left(n+1\right)\)
Nếu: \(n=2k\)thì: \(B\)\(⋮\)\(2\)
Nếu \(n=2k+1\)thì: \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=> \(B\)\(⋮\)\(2\)
Vậy B chia hết cho 2
Ta co: 2n-1 chia het cho 7 nen 2n-1+2 se chia 7 du 2
=> 2n+1 khong chia het cho 7
\(\left(2^{48}-1\right)⋮97\)
ta có \(\left(2^{48}-1\right)=1+2+2^2+2^3+...+2^{47}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{46}+2^{47}\right)\)
\(=3+\left(2^2+2^2\right)\cdot\left(1+2\right)+\left(2^4+2^4\right)\cdot\left(1+2\right)+...+\left(2^{46}+2^{46}\right)\cdot\left(1+2\right)\)
đến đoạn đó rồi mình chưa biết làm, tự làm nhé bữa sau mình làm