K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

a) đặt t = \(\sqrt{x+13}\) nên 7 = t2 - x - 6.

pt: x2 + 4x - t = t2 - x - 6 hay (x + 2)2 + (x + 2) + t - t2 = 0.

đặt a = x + 2.

pt: a2 - t2 + a - t = 0 hay (a - t)(a + t + 1) = 0.

* nếu a = t hay x + 2 = \(\sqrt{x+13}\) hay x2 + 3x - 9 = 0. (tự giải).

* nếu a + t + 1 = 0 hay \(\sqrt{x+13}\) = - x - 3 (ĐK -13\(\le\)x \(\le\)-3)

khi đó x2 + 5x - 2 = 0. (tự giải).

b) đặt t = \(\sqrt{x-3}\)(t >=0).  khi đó x = t2 + 3.

pt: t4 - t2 + 2t + 1 = 0.

* nếu t \(\ge\)1 thì t4 \(\ge\) t2 nên pt vô nghiệm.

* nếu 0 \(\le\) t \(\le\) 1 thì t 2\(\le\)t nên pt cũng vô nghiệm.

vậy pt vô nghiệm.

14 tháng 6 2019

Ta có:

\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}\)

\(=\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{75}{4}}+\sqrt{\left(2x-1\right)^2+3\left(x+2\right)^2}+\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{3}{4}\left(4x+3\right)^2}\)

\(\ge\sqrt{\frac{75}{4}}+\sqrt{3\left(x+2\right)^2}+\sqrt{\frac{3}{4}\left(4x+3\right)^2}\)

\(=\frac{5\sqrt{3}}{2}+\sqrt{3}\left(x+2\right)+\frac{\sqrt{3}\left(4x+3\right)}{2}=3\sqrt{3}\left(x+2\right)\)

Dấu = xảy ra khi ....

20 tháng 12 2015

cai nay la hag dag thuc phan tih ra la dk

25 tháng 3 2016

pt<=>căn((x-1/2)^2+75/4)+căn(2(x-1/2)^2+3(x+2)^2)+căn((x-1/2)^2+3(2x+3/2)^2)>=3*căn3(x+2)

dấu = xãy ra khi x=1/2

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm

 

NV
21 tháng 12 2020

\(\Leftrightarrow x^2-4x+13-\sqrt{x^2-4x+13}-6=0\)

Đặt \(\sqrt{x^2-4x+13}=t>0\)

\(\Rightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-4x+13}=3\)

\(\Leftrightarrow x^2-4x+13=9\)

\(\Leftrightarrow x^2-4x+4=0\Rightarrow x=2\)