Tam giác ABC cân ở A, 2 đường cao BD và CE cắt nhau ở I (D thuộc AC, E thuộc AB). Tia AI cắt BC ở M. C/m:
a, M là trung điểm của BC.
b,Tam giác MED cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
BD là đường cao
EC là đường cao
BD cắt EC tại I
Do đó: I là trực tâm
=>AI vuông góc với BC
mà ΔABC cân tại A
nên M là trung điểm của BC
b: Xét ΔEBM và ΔDCM có
EB=DC
góc EBM=góc DCM
BM=CM
Do đó: ΔEBM=ΔDCM
Suy ra: ME=MD
A) Ta có tam giác ABC cân
=> AB = AC
Mà AD + DB = AB
AE + EC = AC
=> DB = EC ( AD = AE gt)
b) đề phải là BE và CD cắt nhau tại I
Ta có AD = AE
=> Tam giác ADE cân tại A
=> Góc ADE = Góc AED
=> Góc EDB = Góc DEC ( Cùng cộng nhau bằng 180 độ )
Xét Tam giác DEB và tám giác EDC có
BD = EC (cmt)
Góc EDB = Góc DEC (cmt)
DE là cạnh chung
=> Tam giác DEB và tam giác EDC (c-g-c)
=> Góc DBE = Góc ECD
=> Góc IBC = Góc ICB ( cùng cộng góc DBE và Góc ECD bằng hai góc ABC và Góc ACB)
=> Tam giác IBC cân
c) Ta có tam giác ADE cân \(\Leftrightarrow\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Và tam giác ABC cân \(\Leftrightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2)\(\Leftrightarrow\widehat{ADE}=\widehat{ABC}\)
Hai góc này ở vị trí đồng vị bằng nhau
=> DE // BC (đpcm)
d) Ta có điểm I cách đều cạnh AB và AC
=> AI là tia phân giác của tam giác ABC
trong tam giác cân tia phân giác cũng là đường cao
=> AI vuông góc với BC
E) chứng minh HI là tia phân giác của tam giác BHC
thì ba điểm thẳng hàng
Bạn tự vẽ hình nha !!!
a) Ta có :
ΔDMB=ΔENC(g-c-g)( Vì MMDˆ=NCEˆ cùng bằng ACBˆ)
Vậy MD=NE
B) Xét ΔDMI và ΔENI ta có:
Dˆ=Eˆ=90o
MD=NE
MIDˆ=NIEˆ(đối đỉnh)
Do đó ΔDMI=ΔENI(cgv-gn)
Vậy MI=NI(hai cạnh tương ứng)
⇒đpcm
Nếu ko nhìn đc thì nhìn cái này nhé :
a) Xét hai ΔDMB và ΔENC có:
MDBˆ=NECˆ=900 (gt)
BD=CE (gt)
Ta có: Bˆ=ACBˆ (vì Δ ABC cân tại A)
Mà ACBˆ=NCEˆ (vì 2 góc đối đỉnh)
⇒Bˆ=NCEˆ
⇒ΔDMB=ΔENC (g.c.g)
⇒DM=EN (hai cạnh tương ứng)
b) Ta có: MD⊥BC và NE⊥BC
⇒MD//NE
⇒DMIˆ=INEˆ (hai góc so le trong)
Xét hai ΔIMD vàΔINE có:
DMIˆ=INEˆ (cmt)
DM=EN (đã cm ở câu a)
MDIˆ=NEIˆ=900 (gt)
⇒ΔIMD=ΔINE (g.c.g)
⇒IM=IN
⇒I là trung điểm của MN
⇒dpcm
1: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
DO đó: I là trực tâm
=>AI\(\perp\)BC tại M
Ta có: ΔABC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
2: Ta có: ΔECB vuông tại E
mà EM là đường trung tuyến
nên EM=BC/2(1)
Ta có: ΔBDC vuông tại D
mà DM là đường trung tuyến
nên DM=BC/2(2)
Từ (1)và (2) suy ra ME=MD
hay ΔMED cân tại M
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{HCB}=\widehat{HBC}\)
hay ΔHBC cân tại H
=>HB=HC
mà AB=AC
nên AH là đường trung trực của BC
=>A,H,M thẳng hàng
b: BC=16cm nên BM=CM=8cm
=>AM=6cm
a. Nối AM
Xét \(2\Delta:\Delta AMB\) và \(\Delta AMC\) có:
\(\left\{{}\begin{matrix}AM.chung\\AB=AC\left(gt\right)\\BM=BC\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Mà: \(\widehat{BMC}=180^o\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM.là.đường.cao\)
Mà H là giao của BD và CE
Vậy H là trực tâm của tam giác ABC
Vậy AH đi qua M
b. \(MC=16:2=8\left(cm\right)\)
Áp dụng định lý Pi - ta - go, suy ra:
\(AM^2+MC^2=AC^2\)
\(\Leftrightarrow AH=\sqrt{AC^2-MC^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
A) Ta có hai đường cao BD và CE giao nhau tại điểm I nên điểm I là trực tâm của tam giác ABC
Mà ta lại có AM đi qua I vậy AM là đường cao của tam giác ABC
Ta lại có tính chất đường cao nối từ đỉnh cân tới cạnh đối diện trong tam giác cân vừa là đường cao vừa là đường trung trực của cạnh đối điện mad đường cao đó đi qua
Vậy M là trung điểm của BC ( CMT)
B) Cái này dài lắm mik gợi ý nhé Cm : AM là đường trung trục của ED từ đó suy ra ME=MD
Bạn vẽ hình lun đi