K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2015

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Dấu "=" xảy ra khi a và b cùng dấu, hay \(a.b\ge0\)

\(B=\left|x-2010\right|+\left|2-x\right|\ge\left|x-2010+2-x\right|=2008\)

Dấu "=" xảy ra khi \(\left(x-2010\right)\left(2-x\right)\ge0\)\(\Leftrightarrow\left(x-2\right)\left(x-2010\right)\le0\)(1)

Do \(x-2>x-2010\) nên (1) tương đương \(x-2\ge0\) và \(x-2010\le0\), tương đương \(2\le x\le2010\)

Vậy GTNN của B là 2008

 

23 tháng 5 2021

2450 nhé

23 tháng 5 2021

còn cái nịtッ

10 tháng 4 2017

Lập bảng xét dấu rồi làm nha bạn.

10 tháng 4 2017

mk mới lớp 7 k giải đc toán 8 

16 tháng 10 2017

Bằng 0 và ko có giá trị của x thỏa mãn

16 tháng 10 2017

làm ơn ghi lời giải

10 tháng 9 2017

ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)

mà \(\left|x-2\right|\ge0\)

\(\Rightarrow P\ge8\)

dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)

<=> x=2

vậy Pmin =8 <=> x=2

giá trị nhỏ nhất là 2011

tk  nha

AH
Akai Haruma
Giáo viên
28 tháng 7

Lời giải:

$6x+y=5$

$\Rightarrow y=5-6x$

Khi đó: $A=|x+1|+|y-2|=|x+1|+|5-6x-2|=|x+1|+|3-6x|$

Nếu $x<-1$ thì:

$A=-x-1+3-6x=2-7x> 2-7(-1)=9$

Nếu $\frac{1}{2}\geq x\geq -1$ thì:

$A=x+1+3-6x=4-5x\geq 4-5.\frac{1}{2}=\frac{3}{2}$

Nếu $x> \frac{1}{2}$ thì:

$A=x+1+6x-3=7x-2> 7.\frac{1}{2}-2=\frac{3}{2}$

Từ 3 TH trên suy ra $A_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$