K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Bất đẳng thức Nesbitt – Wikipedia tiếng Việt

27 tháng 4 2017

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x;y;z\ge0\) ta được :

\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+\left(a+b+c\right)}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra <=> \(a=b=c=1\)

Vậy GTNN của B là \(\frac{3}{2}\) tại \(a=b=c=1\)

26 tháng 4 2017

dùng bđt 1/x+1/y+1/z >/ 9/(x+y+z) với x,y,z>0 

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

4 tháng 5 2017

Áp dụng bất đẳng thức cauchy-schwarz dạng engel:

\(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

lại có theo AM-GM :\(ab+bc+ca\le a^2+b^2+c^2\)

\(\Rightarrow P\ge a^2+b^2+c^2\)(*)

Áp dụng bất đẳng thức AM-GM: \(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)\ge2a+2b+2c\)(1)

và \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)(2)

cộng theo vế (1) và (2): \(3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)=12\)

\(\Leftrightarrow a^2+b^2+c^2\ge3\)(**)

từ (*) và (**) ta có \(P\ge3\)

đẳng thức xảy ra khi a=b=c=1

Câu 21. Cho  và . Tính giá trị của biểu thức A. .                  B. .               C. .               D. .Câu 22. Tìm giá trị nhỏ nhất của .A.  đạt giá trị nhỏ nhất là .                     B.  đạt giá trị nhỏ nhất là C.  đạt giá trị nhỏ nhất là .                      D.  đạt giá trị nhỏ nhất là .Câu 23. Tìm giá trị lớn nhất của .A.  đạt giá trị lớn nhất là .                    B.  đạt giá trị lớn nhất là C....
Đọc tiếp

Câu 21. Cho  và . Tính giá trị của biểu thức

A. .                  B. .               C. .               D. .

Câu 22. Tìm giá trị nhỏ nhất của .

A.  đạt giá trị nhỏ nhất là .                     B.  đạt giá trị nhỏ nhất là

C.  đạt giá trị nhỏ nhất là .                      D.  đạt giá trị nhỏ nhất là .

Câu 23. Tìm giá trị lớn nhất của .

A.  đạt giá trị lớn nhất là .                    B.  đạt giá trị lớn nhất là

C.  đạt giá trị lớn nhất là .                    D.  đạt giá trị lớn nhất là /

Câu 24. Tìm  thỏa mãn

A.                        B.                  C.                D.

Câu 25. Hỏi có bao nhiêu giá trị  thỏa mãn ?

A. Có một giá trị                                               B. Có hai giá trị

C. Có ba giá trị                                                 D. Có bốn giá trị.

2
4 tháng 11 2021

lỗi r bn ơi

Bạn ghi lại đề đi bạn

7 tháng 11 2021

a)  80

b)   9

7 tháng 1 2022

sai rồi

16 tháng 5 2016

ta có: \(a+1>=2\sqrt{a};b+1>=2\sqrt{b};c+1>=2\sqrt{c}\)

=> \(\left(a+1\right)\left(b+1\right)\left(c+1\right)>=8\sqrt{abc}=8\)

Vậy min P=8.Dấu = khi a=b=c=1.

16 tháng 5 2016

Áp dụng BĐT Cô-si, ta lần lượt có:

\(a+1\ge\sqrt{a};b+1\ge\sqrt{b};c+1\ge\sqrt{c}\)

Vậy \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}=8\sqrt{a\times b\times c}=8\)

Dấu bằng xảy ra khi a=b=c=1