Rút gọn các biểu thức sau : a)(x^2-3)/(x+căn3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,9\sqrt{5}+3\sqrt{20}-7\sqrt{45}=9\sqrt{5}+6\sqrt{5}-21\sqrt{5}=-6\sqrt{5}\\ b,\dfrac{2\sqrt{6}+\sqrt{40}}{\sqrt{3}+\sqrt{5}}=\dfrac{2\sqrt{6}+2\sqrt{10}}{\sqrt{3}+\sqrt{5}}\\ =\dfrac{2\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{2\sqrt{2}\left(5-3\right)}{5-3}=2\sqrt{2}\)
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
\(\sqrt{\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}+\sqrt{\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}\)
\(=\sqrt{\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3-2}}+\sqrt{\dfrac{\left(\sqrt{3}+\sqrt{2}\right)^2}{3-2}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}=2\sqrt{3}\)
a, ( x+ 2 )( x - 2 ) - ( x-3 ( x-1)
= \(^{x^2}\) - \(2^2\) - ( \(x^2\)+ x - 3x - x)
= \(x^2\) - 4 - \(x^2\) - x + 3x + 3
= 2x -1
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
a) \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)
\(=\left(3-xy^2+2+xy^2\right)\left(3-xy^2-2-xy^2\right)\)
\(=5.\left(-2xy^2\right)\)
\(=-10xy^2\)
b) \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
c) \(\left(x-3\right)^3+\left(2-x\right)^3\)
\(=x^3-3x^2.3+3x.3^2-3^3+2^3-3.2^2.x+3.2.x^2-x^3\)
\(=x^3-9x^2+27x-27+8-12x+6x^2-x^3\)
\(=\left(x^3-x^3\right)+\left(-9x^2+6x^2\right)+\left(27x-12x\right)+\left(-27+8\right)\)
\(=-3x^2+15x-19\)
ĐKXĐ: `x>=0;x\ne9`
`(x^2-3)/(sqrtx-3)=((x-sqrt3)(x+sqrt3))/(x+sqrt3)=x-sqrt3`
`a)(x^2-3)/(x+\sqrt3)`
`->` ĐKXĐ : `x>=0;x\ne9`
`=((x-\sqrt3)(x+\sqrt3))/(x+\sqrt3)`
`=(x-\sqrt3)/1`
`=x-\sqrt3`