K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

bài này nghiệm đẹp bình lên được đó

\(-x\left(x+1\right)\left(x^2+x-15\right)=0\)

24 tháng 5 2017

bỏ bớt số 5 ở vế phải nha 

NV
10 tháng 9 2021

a. ĐKXĐ \(x\ge2\)

\(\sqrt{x+3}-3+\sqrt{x-2}-2=0\)

\(\Leftrightarrow\dfrac{x-6}{\sqrt{x+3}+3}+\dfrac{x-6}{\sqrt{x-2}+2}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\dfrac{1}{\sqrt{x+3}+3}+\dfrac{1}{\sqrt{x-2}+2}\right)=0\)

\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x^2-x-1=\left(1-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2-x-1=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x=2\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\) Pt vô nghiệm 

10 tháng 9 2021

\(a.\sqrt{x+3}=5-\sqrt{x-2}\)

\(\sqrt{x+3}+\sqrt{x-2}=5\)

\(\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}=5^2\)

\(x+3+x-2=25\)

\(2x+1=25\)

\(x=12\)

\(b.\sqrt{x^2-x-1}=1-x\)

\(\sqrt{\left(x^2-x-1\right)^2}=\left(1-x\right)^2\)

\(x^2-x-1=1-2x+x^2\)

\(x^2-x-1-1+2x-x^2=0\)

\(x-2=0\)

\(x=2\)

12 tháng 7 2018

\(\sqrt{x^2+2x+5}=-x^2-2x+1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

Ta thấy :

\(-\left(x+1\right)^2+2\le2\) Với \(\forall x\in R\)

\(\sqrt{\left(x+1\right)^2+4}\ge2\) Với \(\forall x\in R\)

\(\Rightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\) Khi x + 1 = 0 \(\Leftrightarrow\) x = -1

Vậy Phương trình có nghiệm x = -1 .

12 tháng 7 2018

\(\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta thấy :

\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\) \(\ge1\) Với \(\forall x\in R\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\ge3\) Với \(\forall x\in R\)

\(-x^2+6x-5=-\left(x-3\right)^2+4\le4\) Với \(\forall x\in R\)

\(\Rightarrow VT\ge4\) ; \(VP\le4\)

\(\Rightarrow VT=VP=4\)

Dấu "=" xảy ra khi x - 3 = 0 \(\Leftrightarrow\) x = 3

Vậy phương trình có nghiệm x = 3 .

28 tháng 11 2021

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé

23 tháng 7 2021

a, \(\sqrt[3]{\dfrac{2x}{x+1}}.\sqrt[3]{\dfrac{x+1}{2x}}=2\)

⇔ \(\left\{{}\begin{matrix}1=2\\x\ne0\&x\ne-1\end{matrix}\right.\)

Phương trình vô nghiệm

b, x = \(\dfrac{8}{125}\)

a: =>2x+1=27

=>2x=26

=>x=13

b: =>\(\sqrt[3]{x+5}=x+5\)

=>x+5=(x+5)^3

=>(x+5)(x+4)(x+6)=0

=>x=-5;x=-4;x=-6

c: =>2-3x=-8

=>3x=10

=>x=10/3

d: =>\(\sqrt[3]{x-1}=x-1\)

=>(x-1)^3=(x-1)

=>x(x-1)(x-2)=0

=>x=0;x=1;x=2

28 tháng 11 2021

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé