K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Ta có: \(\left(a-1\right)^3=a^3-3a^2+3a-1\)

\(=a\left(a^2-3a+3\right)-1=a\left(a-\frac{3}{2}\right)^2+\frac{3}{4}a-1\ge\frac{3}{4}a-1\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\left(b-1\right)^3\ge\frac{3}{4}b-1;\left(c-1\right)^3\ge\frac{3}{4}c-1\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\frac{3}{4}\left(a+b+c\right)-3=\frac{3}{4}\cdot3-3=-\frac{3}{4}\)

28 tháng 10 2020

can gap nha

NV
27 tháng 10 2019

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)

\(P=\frac{a+b}{2a-b}+\frac{b+c}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{\frac{2ac}{a+c}+c}{2c-\frac{2ac}{a+c}}=\frac{a+3c}{2a}+\frac{3a+c}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)

Dấu "=" xảy ra khi \(a=b=c\)

29 tháng 3 2016

bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá

bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được

15 tháng 4 2016

(a+b-c)/c+2 =(b+c-a)/c+2 =(c+a-b)/c+2 

rồi bạn tự làm tiếp nhé

xét 2 trường hợp

thay vào thôi nhé bạn 

 Nhớ k cho mình nhé

NV
24 tháng 11 2018

Áp dụng BĐT Bunhia:

\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\)

\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{3.\left(4\left(a+b+c\right)+3\right)}=\sqrt{21}< \sqrt{25}=5\)

Vậy \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)

1 tháng 12 2017

Chỗ giả thiết vế phải có đúng ko vậy