K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

tia phân giác góc BAC cắt thế nào nổi AC :))

23 tháng 5 2017

TỚ ĐÃ SỬA CÂU HỎI RỒI

26 tháng 12 2018

a) . Xét\(\Delta ABE\) và  \(\Delta ADE\) có:

     BA = DA (gt)

     Góc BAE = góc DAE ( gt)

    AE cạnh chung

nên \(\Delta ADE\) =   \(\Delta ABE\)( c-g-c)

b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)\(^{180^o}\)

    Suy ra : \(\widehat{AIB}\)  = \(180^o\)\(\widehat{ABI}-\widehat{BAI}\)

               \(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)

    Suy ra: \(\widehat{AID}\)\(180^O\) -     \(\widehat{ADI}\)-\(\widehat{IAD}\)

   Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)

         \(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)

   \(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)

Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )

MÀ  \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )

NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)

HAY   \(AE\perp BD\)

a: Xét ΔAEB và ΔAEF có

AE chung

\(\widehat{BAE}=\widehat{FAE}\)

AB=AF

Do đó: ΔAEB=ΔAEF

b: Sửa đề: Chứng minh MB=MF

Ta có: ΔABE=ΔAFE

=>AB=AF

=>ΔABF cân tại A

Ta có: ΔABF cân tại A

mà AM là đường phân giác

nên M là trung điểm của BF và AM\(\perp\)BF

M là trung điểm của BF nên MB=MF

AM\(\perp\)BF tại M

=>AE\(\perp\)BF tại M

c: ta có: ΔABE=ΔAFE

=>\(\widehat{ABE}=\widehat{AFE}\)

Ta có: \(\widehat{ABE}+\widehat{DBE}=180^0\)(hai góc kề bù)

\(\widehat{AFE}+\widehat{CFE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABE}=\widehat{AFE}\)

nên \(\widehat{EBD}=\widehat{EFC}\)

Ta có: AB+BD=AD

AF+FC=AC

mà AB=AF và AD=AC

nên BD=FC

Xét ΔEBD và ΔEFC có

EB=EF

\(\widehat{EBD}=\widehat{EFC}\)

BD=FC

Do đó: ΔEBD=ΔEFC

=>ED=EC

=>E nằm trên đường trung trực của DC(1)

ta có: AD=AC

=>A nằm trên đường trung trực của DC(2)

Ta có: KD=KC

=>K nằm trên đường trung trực của DC(3)

Từ (1),(2),(3) suy ra A,E,K thẳng hàng

26 tháng 1

Hay

23 tháng 8 2021

Lời giải:
a. Xét tam giác ABDABD và AEDAED có:

AB=AEAB=AE (gt)

ˆBAD=ˆEADBAD^=EAD^ (tính chất tia phân giác)

ADAD chung

⇒△ABD=△AED⇒△ABD=△AED (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra BD=EDBD=ED và ˆABD=ˆAEDABD^=AED^

⇒1800−ˆABD=1800−ˆAED⇒1800−ABD^=1800−AED^

⇒ˆDBM=ˆDEC⇒DBM^=DEC^

Xét tam giác DBMDBM và DECDEC có:

ˆBDM=ˆEDCBDM^=EDC^ (đối đỉnh)

BD=EDBD=ED (cmt)

ˆDBM=ˆDECDBM^=DEC^ (cmt)

⇒△DBM=△DEC⇒△DBM=△DEC (g.c.g)

10 tháng 7 2017

a) xét tam giác ABD và tam giác ACD có

AB=AC,AD là cạnh chung góc BAD= góc DAC

vậy tam giác ABD=tam giác ACD(C.g.c)

Suy ra gócADB=gócADC=1/2BDC=1/2*180=90

Hay AD vuông góc với BC

25 tháng 2 2020

A B C D E F H K I

Lần lượt vẽ H, K đối xứng với E, F qua AC, BC.

+) AC là đường trung trực của đoạn thẳng EH nên \(\widehat{HCE}=2\widehat{ACE}\)(*)

+) BC là đường trung trực của đoạn thẳng FK nên \(\widehat{FCK}=2\widehat{BCF}\)(**)

A thuộc đường trung trực của IE và EH nên AI = AE = AH

Suy ra tam giác AIH cân tại A mà AD là phân giác của góc A nên AD là trung trực của IH, do đó FI = FH (1)

Xét \(\Delta FBI\)và \(\Delta KBE\)có:

    BF = BK (B thuộc đường trung trực của FK)

    \(\widehat{IBF}=\widehat{EBK}\)(do \(\widehat{ABE}=\widehat{CBF}\Rightarrow\widehat{IBE}=\widehat{KBF}\Rightarrow\widehat{IBF}=\widehat{EBK}\))

   BI = BE (B thuộc đường trung trực của IE)

Do đó \(\Delta FBI\)\(=\Delta KBE\left(c-g-c\right)\)

\(\Rightarrow EK=FI\)(hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra EK = FH

Xét \(\Delta KCE\)và \(\Delta FCH\)có:

    EC = HC (C thuộc đường trung trực của EH)

   KE = FH (cmt)

   CK = CF (C thuộc đường trung trực của FK)

Do đó \(\Delta KCE\)\(=\Delta FCH\left(c-c-c\right)\)

\(\Rightarrow\widehat{ECK}=\widehat{HCF}\)(hai góc tương ứng)

\(\Rightarrow\widehat{ECH}=\widehat{KCF}\)(***)

Từ (*), (**), (***) suy ra \(\widehat{ACE}=\widehat{BCF}\left(đpcm\right)\)