K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

-x^2+6x-11

=-(x^2-6x+11)

=-(x^2-6x+9+2)

=-(x-3)^2-2<=-2

Dấu = xảy ra khi x=3

17 tháng 10 2016

a)\(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu = khi \(x=\frac{-1}{2}\)

Vậy MinA=10 khi \(x=\frac{-1}{2}\)

b)\(B=3x^2-6x+1\)

\(=3x^2-6x+3-2\)

\(=3\left(x^2-2x+1\right)-2\)

\(=3\left(x-1\right)^2-2\ge-2\)

Dấu = khi \(x=1\)

Vậy MinB=-2 khi \(x=1\)

c)\(C=x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

14 tháng 4 2018

Ta có \(\left|x+1\right|\ge0\)với mọi giá trị của x

và \(\left|x-2018\right|\ge0\)với mọi giá trị của x

=> \(\left|x+1\right|+\left|x-2018\right|\ge0\)với mọi giá trị của x

Vậy GTNN của A là 0.

14 tháng 4 2018

Gtnn của A  là 2017

12 tháng 1 2017

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)

\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)

Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

30 tháng 12 2015

Để A có giá trị nhỏ nhất thì cái giá trị tuyệt đối phải nhỏ nhất==>nó phải bằng 0

Nên x=-5 để A có GTNN

Vậy MinA=20 <=>x=-5

Còn cái B thì tương tự

MinB=-10<=>x=3

 

30 tháng 12 2015

a,x NHỎ NHẤT =-5

b,x NHỎ NHẤT=3