Bài 6. Cho góc nhọn a. Biết cosa - sina = \(\dfrac{1}{5}\). Tính cot a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos a-\sin a=\dfrac{1}{5}\\ \Leftrightarrow\left(\cos a-\sin a\right)^2=\dfrac{1}{25}\\ \Leftrightarrow1-2\sin a\cos a=\dfrac{1}{25}\\ \Leftrightarrow2\sin a\cos a=\dfrac{24}{25}\)
Mà \(\cos a=\dfrac{1}{5}+\sin a\)
\(\Leftrightarrow2\sin a\left(\dfrac{1}{5}+\sin a\right)=\dfrac{24}{25}\\ \Leftrightarrow\dfrac{2}{5}\sin a+2\sin^2a-\dfrac{24}{25}=0\\ \Leftrightarrow\left[{}\begin{matrix}\sin a=\dfrac{3}{5}\\\sin a=-\dfrac{4}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\cos a=\dfrac{4}{5}\\\cos a=-\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\cot a=\dfrac{4}{5}\cdot\dfrac{5}{3}=\dfrac{4}{3}\)
\(\Leftrightarrow2\cdot sin\left(\dfrac{a}{2}\right)\cdot cos\left(\dfrac{a}{2}\right)+2\cdot cos^2\left(\dfrac{a}{2}\right)-1-\dfrac{cos\left(\dfrac{a}{2}\right)}{sin\left(\dfrac{a}{2}\right)}=0\)
=>\(2\cdot cos\left(\dfrac{a}{2}\right)\left(sin\left(\dfrac{a}{2}\right)+cos\left(\dfrac{a}{2}\right)\right)=\dfrac{cos\left(\dfrac{a}{2}\right)+sin\left(\dfrac{a}{2}\right)}{sin\left(\dfrac{a}{2}\right)}\)
=>\(\left(cos\left(\dfrac{a}{2}\right)+sin\left(\dfrac{a}{2}\right)\right)\left(sin\left(a\right)-1\right)=0\)
=>cos(a/2)=-sin(a/2) hoặc sin a-1=0
=>cot(a/2)=-1 hoặc sina =1
=>a=-pi/2(loại) hoặc a=pi/2
\(tan\left(a+\dfrac{2013pi}{2}\right)=tan\left(a+\dfrac{pi}{2}\right)=tan\left(\dfrac{pi}{2}+\dfrac{pi}{2}\right)=tanpi=0\)
a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2a=1-\sin^2\alpha=1-\left(\frac{\sqrt{3}}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow\cos\alpha=\frac{1}{2}\)(do \(\cos\alpha>0\))
b) \(Q=\sin^2\alpha+\cot^2\alpha.\sin^2\alpha=\sin^2\alpha\left(1+\cot^2\alpha\right)\)\(=\sin^2\alpha\left(1+\frac{\cos^2\alpha}{\sin^2\alpha}\right)=\sin^2\alpha.\frac{\sin^2\alpha+\cos^2\alpha}{\sin^2\alpha}=1\)
a) \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)
\(\dfrac{sina}{sina-cosa}-\dfrac{cosa}{cosa-sina}=\dfrac{sina+cosa}{sina-cosa}=\dfrac{1+cota}{1-cota}=\dfrac{\left(1+cota\right)^2}{1-cot^2a}\)
Đề bài ko đúng
Bài 2:
\(\cos\alpha=\sqrt{1-\dfrac{4}{9}}=\dfrac{\sqrt{5}}{3}\)
\(\tan\alpha=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
\(\cot\alpha=\dfrac{\sqrt{5}}{2}\)
a) Có: `1+tan^2a=1/(cos^2a)`
`<=> 1+(3/5)^2=1/(cos^2a)`
`=> cosa=\sqrt10/4`
`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`
b) Có: `sin^2a + cos^2a=1`
`<=> sin^2a + (1/4)^2=1`
`=> sina=\sqrt15/4`
`=> tana = (sina)/(cosa) = \sqrt15`
Má ơi,tính sai:
a)\(\left[{}\begin{matrix}cos\alpha=\dfrac{5\sqrt{34}}{34}\\cos\alpha=\dfrac{-5\sqrt{34}}{34}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}sin\alpha=cos\alpha.tan\alpha=\dfrac{3\sqrt{34}}{34}\\sin\alpha=cos\alpha.tan\alpha=\dfrac{-3\sqrt{34}}{34}\end{matrix}\right.\)
b)\(\left[{}\begin{matrix}sin\alpha=\dfrac{\sqrt{15}}{4}\\sin\alpha=\dfrac{-\sqrt{15}}{4}\end{matrix}\right.\)\(\left[{}\begin{matrix}tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\sqrt{15}\\tatn\alpha=-\sqrt{15}\end{matrix}\right.\)
Ta có: \(sin^2\alpha+cos^2\alpha=1\Rightarrow sin^2\alpha+\left(sin\alpha+\dfrac{1}{5}\right)^2=1\)
\(\Rightarrow25sin^2\alpha+5sin\alpha-12=0\\\Rightarrow\left(5sin\alpha-3\right)\left(5sin\alpha+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}sin\alpha=\dfrac{3}{5}\Rightarrow cos\alpha=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\Rightarrow cot\alpha=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\\sin\alpha=-\dfrac{4}{5}\left(loại\right)\end{matrix}\right. \)