K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

hay \(x=\dfrac{2}{7}\)

b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Bài 1: 

a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)

\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)

\(=xy\)

=1

b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)

\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)

\(=x^2-y^2\)

\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)

a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)

Vậy: Khi x-y=7 thì A=100

b) Ta có: \(x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy+10=4\)

\(\Leftrightarrow2xy=-6\)

\(\Leftrightarrow xy=-3\)

Ta có: \(A=x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)

Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:

\(A=2\cdot\left(10+3\right)=2\cdot13=26\)

Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26

16 tháng 2 2021

\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)

Bài 2: 

a: \(=x^{n+19-14}=x^{n+5}\)

b: \(=x^{94-17-65}=x^{12}\)

  \(3xy-2y+6x=0\)

\(\Leftrightarrow3xy+6x-2y-4+4=0\)

\(\Leftrightarrow3x\left(y+2\right)-2\left(y+2\right)+4=0\)

\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=-4\)

Vì x,y là các số nguyên nên y+2 và 3x-2 cũng là các số nguyên

\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=1.\left(-4\right)=\left(-1\right).4\)

Ta có bảng sau: 

  y+2      -1     4       -4        1
    y       -3      2       -6        -1
 3x-2        4      -1        1        -4
   3x        6        1        3        -2
   x        2    \(\dfrac{1}{3}\)(loại)        1  \(\dfrac{-2}{3}\)(loại)

 

TH1: \(y=-3\) ;\(x=2\) thì \(x+y=2+\left(-3\right)=-1\)

TH2: \(y=-6;x=1\) thì \(x+y=-6+1=-5\) 

Vậy \(x+y=-1\) khi \(y=-3\) và \(x=2\) 

       \(x+y=-5\) khi \(y=-6;x=1\)

 

Giải:

Ta có:

\(3xy-2y+6x=0\) 

\(\Rightarrow3x.\left(y+2\right)-2y-4=-4\) 

\(\Rightarrow3x.\left(y+2\right)-2.\left(y+2\right)=-4\) 

\(\Rightarrow\left(3x-2\right).\left(y+2\right)=-4\) 

\(\Rightarrow\left(3x-2\right)\) và \(\left(y+2\right)\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\) 

Ta có bảng giá trị:

3x-2-4-2-1124
y+2124-4-2-1
x\(\dfrac{-2}{3}\) (loại)0 (t/m)\(\dfrac{1}{3}\) (loại)1 (t/m)\(\dfrac{4}{3}\) (loại)2 (t/m)
y-102-6-4-3

Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;-6\right);\left(2;-3\right)\right\}\) 

\(\left(+\right)TH1:x+y=0+0=0\) 

\(\left(+\right)TH2:x+y=1+-6=-5\) 

\(\left(+\right)TH3:x+y=2+-3=-1\) 

Chúc bạn học tốt!

\(A=2xy-x^2-2yz+4y^2=2\cdot2\cdot\dfrac{1}{2}-2^2-2\cdot\dfrac{1}{2}\cdot\left(-1\right)+4\cdot\left(\dfrac{1}{2}\right)^2\)

\(=2-4+1+4\cdot\dfrac{1}{4}=-2+1+1=0\)

29 tháng 5 2022

A = 2 (2 . 1/2 - 2) - 2 . 1/2 (-1 - 2 . 1/2) 

A = 2 (1 - 2) - 1 (-1 - 1) 

A = 2 . (-1)  - 1 . (-2) 

A = -2 + 2

A = 0

@Liz.Ald2094

8 tháng 6 2020

nhầm xíu '-'