Chứng tỏ rằng:
A=\(\frac{1}{12}+\frac{1}{13}+.......+\frac{1}{22}>\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{22}>\) \(\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{11}{22}=\frac{1}{2}\)
\---------------------------------------------/
11 số 1/22
Từ trên ta có đpcm
Đặt vế trái của Bất đẳng thức la A
\(A< \frac{1}{8}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}.\)
\(A< \frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{3}{10}< \frac{5}{10}=\frac{1}{2}\)
Ta có:
1/2=1/22+1/22+...+1/22 có 11 p/số
A=1/12+1/13+...+1/22 có 11 p/số
Vì 1/12>1/22
1/13>1/22
.....
1/21>1/22
1/22=1/22
=>A>2
Ai thấy đúng thì !!
Vì 1/12 > 1/22
1/13 > 1/22
........
1/21 > 1/22
1/22 = 1/22
Kết luận: A > 2