tìm no của đa thức N(x) = x3 - 2,5x2 - 4,5x + 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến :
\(P\left(x\right)=3x^4-2x^3+3x+11\)
\(Q\left(x\right)=-3x^4+2x^3+2x+4\)
Tính :
\(P\left(x\right)+Q\left(x\right)=3x^4-2x^3+3x+11-3x^4+2x^3+2x+4\)
\(=5x+15\)
Đặt \(h\left(x\right)=0\)
\(\Rightarrow5x+15=0\)
\(\Rightarrow5x=-15\)
\(\Rightarrow x=-3\)
Vậy \(x=-3\) là nghiệm của h(x)
a: f(x)=3x^4+2x^3+6x^2-x+2
g(x)=-3x^4-2x^3-5x^2+x-6
b: H(x)=f(x)+g(x)
=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6
=x^2-4
f(x)-g(x)
=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6
=6x^4+4x^3+11x^2-2x+8
c: H(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
a: M(x)=5x^4+4x^3+2x+1-5x^4+x^3+3x^2+x-1
=5x^3+3x^2+3x
b: N(x)=5x^4+4x^3+2x+1+5x^4-x^3-3x^2-x+1
=10x^4+3x^3-3x^2+x+2
`@` `\text {dnammv}`
` \text {M(x)-A(x)=B(x)}`
`-> \text {M(x)=A(x)+B(x)}`
`-> M(x)=(5x^4 + 4x^3 + 2x + 1)+(-5x^4 + x^3 + 3x^2 + x - 1)`
`= 5x^4 + 4x^3 + 2x + 1-5x^4 + x^3 + 3x^2 + x - 1`
`= (5x^4-5x^4)+(4x^3+x^3)+3x^2+(2x+x)+(1-1)`
`= 5x^3+3x^2+3x`
`b,`
`\text {N(x)=A(x)-B(x)}`
`N(x)=(5x^4 + 4x^3 + 2x + 1)-(-5x^4 + x^3 + 3x^2 + x - 1)`
`= 5x^4 + 4x^3 + 2x + 1+5x^4 - x^3 - 3x^2 - x + 1`
`= (5x^4+5x^4)+(4x^3-x^3)-3x^2+(2x-x)+(1+1)`
`= 10x^4+3x^3-3x^2+x+2`
\(f\left(x\right)=x^3-x+7\)
\(g\left(x\right)=-x^3+8x-14\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=7x-7\)
Nghiệm của đa thức \(f\left(x\right)+g\left(x\right)=0\Rightarrow7x-7=0\)
\(\Rightarrow x=1\)
`a,`
`P(x)=2x^3-2x+x^2-x^3+3x+2`
`= (2x^3-x^3)+x^2+(-2x+3x)+2`
`= x^3+x^2+x+2`
`b,`
`H(x)+Q(x)=P(x)`
`-> H(x)=P(x)-Q(x)`
`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`
`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`
`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`
`= 2x^2+2x+1`
Vậy, `H(x)=2x^2+2x+1.`
a.
\(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=x^3-x^2-x+1\)
b.
\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)
\(\Rightarrow H\left(x\right)=2x^2+2x+1\)
Ta có: \(N\left(x\right)=x^3-2,5x^2-4,5x+11\)
\(N\left(x\right)=x^3-\left(2x^2+0,5x^2\right)-\left(-1x+5,5x\right)+11\)
\(N\left(x\right)=x^3-2x^2-0,5x^2+1x-5,5x+11\)
\(N\left(x\right)=\left(x^3-2x^2\right)-\left(0,5x^2-1x\right)-\left(5,5x-11\right)\)
\(N\left(x\right)=x^2\left(x-2\right)-0,5x\left(x-2\right)-5,5\left(x-2\right)\)
\(N\left(x\right)=\left(x^2-0,5x-5,5\right)\left(x-2\right)\)
Cho \(N\left(x\right)=0\) \(\Rightarrow\) \(\left(x^2-0,5x-5,5\right)\left(x-2\right)=0\)
\(\Rightarrow\) \(x^2-0,5x-5,5=0\) hoặc \(x-2=0\)
\(x=2\)
Vậy 1 nghiệm của đa thức N(x) là 2
mình cần tìm hết nghiệm của đa thức N(x)