b)x^2y+xy^2-x-y
c)ax^2+ay-bx^2-by
d)x(x+1)^2+x(x-5)-5(x-1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn post nhiều nên mình ghi đáp án thôi nhé phần nào sai đề mình cho qua
b)\(\left(x+1\right)\left(xy+1\right)\)
c)\(\left(a+b\right)\left(x+y\right)\)
d)\(\left(x-a\right)\left(x-b\right)\)
e)\(\left(x+y\right)\left(xy-1\right)\)
f)\(\left(a-b\right)\left(x^2+y\right)\)
\(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x^3+1\right)\left(x+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
\(x^4-x^3-x+1=\left(x^4-x^3\right)-\left(x-1\right)=\left(x^3-1\right)\left(x-1\right)=\left(x-1\right)^2\left(x^2+x+1\right)\)
\(x^2y+xy^2-\left(x+y\right)=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
\(ax^2+ay-bx^2-by=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(a-b\right)\left(x^2+y\right)\)
1: \(=a\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(a-4\right)\)
2: \(=x\left(x+b\right)+a\left(x+b\right)=\left(x+b\right)\left(x+q\right)\)
3: \(=a\left(x+1\right)-b\left(x+1\right)+c\left(x+1\right)\)
\(=\left(x+1\right)\left(a-b+c\right)\)
6: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
1/ \(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right).\)
\(=x^2+6x+9-\left(2x^2+6x-5x-15\right)\)
\(=x^2+6x+9-2x^2-6x+5x+15\)
\(=-x^2+5x+24\)
\(=-\left(x^2-5x-24\right)\)
\(=-\left(x^2-8x+3x-24\right)\)
\(=-\left[x\left(x-8\right)+3\left(x-8\right)\right]\)
\(=-\left(x-8\right)\left(x+3\right)\)
2/ \(x^2-xy+x-y\)
\(=\left(x^2+x\right)-\left(xy+y\right)\)
\(=x\left(x+1\right)-y\left(x+1\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
3/ \(x^3+6x^2+9x\)
\(=x\left(x^2+6x+9\right)\)
\(=x\left(x+3\right)^2\)
1,Bạn tự lm
\(2,x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-1\right)\left(x+1\right)\)
\(3,x^3+6x^2+9x=x\left(x^2+6x+9\right)=x\left(x+3\right)^2\)
\(4,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(xy+1\right)\)
\(5,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(y+x\right)=\left(x+y\right)\left(a+b\right)\)
\(6,x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=\left(x^2-bx\right)-\left(ax-ab\right)=x\left(x-b\right)-a\left(x-b\right)=\left(x-b\right)\left(x-a\right)\)
a)x2-xy-x+y
=(x2-x)-(xy-y)
=x(x-1)-y(x-1)
=(x-1)(x-y)
b) xy+4-x2+2y
=(4-x2)+(xy+2y)
=(2-x)(x+2)+y(x+2)
=(x+2)(2-x+y)
c) xy+y-2(x+1)
=y(x+1)-2(x+1)
=(x+1)(y-2)
d) 5(x-y)+ax-ay
=5(x-y)+a(x-y)
=(x-y)(5+a)
#H
Trả lời:
a, x2 - xy - x + y
= ( x2 - xy ) - ( x - y )
= x ( x - y ) - ( x - y )
= ( x - y ) ( x - 1 )
b, xy + 4 - x2 + 2y
= ( xy + 2y ) - ( x2 - 4 )
= y ( x + 2 ) - ( x - 2 ) ( x + 2 )
= ( x + 2 ) ( y - x + 2 )
c, xy + y - 2 ( x + 1 )
= y ( x + 1 ) - 2 ( x + 1 )
= ( x + 1 ) ( y - 2 )
d, 5 ( x - y ) + ax - ay
= 5 ( x - y ) + a ( x - y )
= ( 5 + a ) ( x - y )
\(a,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)
\(b,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)
\(c,x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-b\right)\left(x-2\right)\)
\(d,x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
\(e,a\left(x^2+y\right)-b\left(x^2+y\right)=\left(a-b\right)\left(x^2+y\right)\)
\(f,x\left(a-2\right)-a\left(a-2\right)=\left(x-a\right)\left(a-2\right)\)
\(a,xy+1-x-y\)
\(=\left(xy-y\right)+\left(1-x\right)\)
\(=y\left(x-1\right)- \left(x-1\right)\)
\(=\left(x-1\right)\left(y-1\right)\)
\(b,ax+ay-3x-3y\)
\(=a\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(a-3\right)\)
\(c,x^3-2x^2+2x-4\)
\(=x^2\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+2\right)\left(x-2\right)\)
\(d,x^2+ab+ax+bx\)
\(=\left(x^2+ax\right)+\left(ab+bx\right)\)
\(=x\left(a+x\right)+b\left(a+x\right)\)
\(=\left(a+x\right)\left(b+x\right)\)
\(e,16-x^2+2xy-y^2\)
\(=4^2-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
`b, x^2y + xy^2 - x - y = xy(x+y)-(x+y)`
`= (xy-1)(x+y)`
`c, ax^2 +ay - bx^2-by`
`= x^2(a-b) + y(a-b)`
`= (x^2+y)(a-b)`
`b,x^2y+xy^2-x-y=xy(x+y)-(x+y)=(xy-1)(x+y)`
`c,ax^2+ay-bx^2-by=x^2(a-b)+y(a-b)=(x^2+y)(a-b)`
`d,x(x+1)^2+x(x-5)-5(x-1)^2=x(x^2+2x+1)+x^2-5x-5(x^2-2x+1)=x^3+2x^2+x+x^2-5x-5x^2+10x-5=x^3-2x^2+6x-5=x^2(x-1)-x(x-1)+5(x-1)=(x^2-x+5)(x-1)`