K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

1. x = 8,4 : 6

    x = 1,4

2.1/2 = 0,5

x = 0,5 : 0,1 

x = 5

tk nha

17 tháng 5 2017

8, 4 : X = 6

         X = 8, 4 : 6

         X = 1, 4

0, 1 x X = 1/2

          X = 1/2 : 0, 1

          X = 5

12 tháng 9 2021

\(a,M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\left(x>0;x\ne1\right)\\ M=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(b,M=-\dfrac{1}{2}\Leftrightarrow\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=-\dfrac{1}{2}\\ \Leftrightarrow-4x=x+\sqrt{x}-2\\ \Leftrightarrow5x+\sqrt{x}-2=0\)

Đặt \(\sqrt{x}=t\)

\(\Leftrightarrow5t^2+t-2=0\\ \Delta=1^2-4\cdot5\left(-2\right)=41\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{41}}{10}\\t=\dfrac{-1+\sqrt{41}}{10}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(1+\sqrt{41}\right)^2}{100}=\dfrac{-42-2\sqrt{41}}{100}\\x=\dfrac{\left(\sqrt{41}-1\right)^2}{100}=\dfrac{42-2\sqrt{41}}{100}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-21-\sqrt{41}}{50}\left(L\right)\\x=\dfrac{21-\sqrt{41}}{50}\left(N\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{21-\sqrt{41}}{50}\)

a: Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}+\dfrac{x-2}{x\sqrt{x}+x}\right)\)

\(=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2+x-2}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$

$\Rightarrow x=at, y=bt, z=ct$

Khi đó:

$(x^2+y^2+z^2)(a^2+b^2+c^2)=(a^2t^2+b^2t^2+c^2t^2)(a^2+b^2+c^2)$

$=t^2(a^2+b^2+c^2)(a^2+b^2+c^2)$

$=t^2(a^2+b^2+c^2)^2=[t(a^2+b^2+c^2)]^2$

$=(at.a+bt.b+ct.c)^2=(xa+yb+zc)^2$

Ta có đpcm.

7 tháng 7 2021

\(3x\left(x+1\right)-2x\left(x+2\right)=1+x^2\)

3x2+3x-2x2-4x=1+x2

3x2+3x-2x2-4x-x2=1

x=-1

vậy............

 

27 tháng 8 2023

\(\left|x+1\right|-\left|-2x-2\right|=2\)

\(\Leftrightarrow\left|x+1\right|-\left|-2\left(x+1\right)\right|=2\)

\(\Leftrightarrow\left|x+1\right|-2\left|x+1\right|=2\)

\(\Leftrightarrow-\left|x+1\right|=2\)

\(\Leftrightarrow\left|x+1\right|=-2\)

\(\Leftrightarrow\left|x+1\right|+2=0\)

Mà: \(\left|x+1\right|\ge0\forall x\Rightarrow\left|x+1\right|+2\ge2>0\)

\(\Leftrightarrow\left|x+1\right|+2=0\) (vô lí)

Vậy phương trình vô nghiệm:

\(x\in\varnothing\)

=>|x+1|-2|x+1|=2

=>-|x+1|=2

=>|x+1|=-2(vô lý)

Vậy: \(x\in\varnothing\)

17 tháng 12 2021

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

17 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

22 tháng 3 2022

23/12

1/3

22 tháng 3 2022

a.x=23/12

b.x=1/3

15 tháng 5 2023

\(\dfrac{2}{3}+\dfrac{1}{3}:x=\dfrac{1}{2}\)
\(\dfrac{1}{3}:x=\dfrac{1}{2}-\dfrac{2}{3}\)
\(\dfrac{1}{3}:x=-\dfrac{1}{6}\)
\(x=\dfrac{1}{3}:\left(-\dfrac{1}{6}\right)\)
\(x=-2\)
Vậy ...
#AvoidMe

15 tháng 5 2023

`2/3 +1/3 : x=1/2`

`=> 1/3 : x= 1/2 -2/3`

`=> 1/3 : x= 3/6 -4/6`

`=> 1/3 : x=-1/6`

`=> x=1/3 :(-1/6)`

`=> x=1/3 xx (-6)`

`=> x= -2`

Vậy `x=-2`

=>2x^2+2x-3x-3+x^2+2x=3x^2+12x+12

=>12x+12=x-3

=>11x=-15

=>x=-15/11