Câu 19 , Đăk Lắk
Cho các số thực dương x ; y ; z thỏa mãn \(x+2y+3z=2\)
Tìm \(S_{max}=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)
Giải
Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c\right)>0\Rightarrow a+b+c=2\)
Khi đó \(S=\sqrt{\frac{a.\frac{b}{2}}{a.\frac{b}{2}+c}}+\sqrt{\frac{\frac{b}{2}.c}{\frac{b}{2}.c+a}}+\sqrt{\frac{a.c}{a.c+2b}}\)
\(=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ac}{ac+2b}}\)
\(=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}+\sqrt{\frac{bc}{bc+\left(a+b+c\right)a}}+\sqrt{\frac{ac}{ac+\left(a+b+c\right)b}}\)
\(=\sqrt{\frac{ab}{ab+ac+bc+c^2}}+\sqrt{\frac{bc}{bc+a^2+ab+ac}}+\sqrt{\frac{ac}{ac+ab+b^2+bc}}\)
\(=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ac}{\left(a+b\right)\left(b+c\right)}}\)
\(\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}+\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}+\frac{\frac{a}{a+b}+\frac{c}{b+c}}{2}\left(Cauchy\right)\)
\(=\frac{1}{2}\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}\right)\)
\(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Dấu "=" tại a = b = c
20, Thanh hóa
Cho a;b;c > 0 thỏa abc = 1
CMR \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ac}{a^4+c^4+ac}\le1\)
Giải
Áp dụng bất đẳng thức Bunhiacopxki có
\(\left(a^2+b^2\right)^2\le\left(1+1\right)\left(a^4+b^4\right)\)
\(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)
\(\Rightarrow a^4+b^4\ge ab\left(a^2+b^2\right)\)
Khi đó \(\frac{ab}{a^4+b^4+ab}\le\frac{ab}{ab\left(a^2+b^2\right)+ab}=\frac{1}{a^2+b^2+1}\)
Chứng minh tương tự \(\frac{bc}{b^4+c^4+bc}\le\frac{1}{b^2+c^2+1}\)
\(\frac{ac}{a^4+c^4+ac}\le\frac{1}{a^2+c^2+1}\)
Khi đó \(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{a^2+c^2+1}=A\)
Ta sẽ chứng minh A < 1
Thật vậy
Đặt \(\left(a^2;b^2;c^2\right)\rightarrow\left(x^3;y^3;z^3\right)\)
\(\Rightarrow xyz=1\)
Khi đó \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
Áp dụng bđt Cô-si có \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
\(\Rightarrow x^3+y^3\ge\left(x+y\right)xy\)
\(\Rightarrow x^3+y^3+1\ge\left(x+y\right)xy+1=\left(x+y\right)xy+xyz=xy\left(x+y+z\right)\)
\(\Rightarrow\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}=\frac{xyz}{xy\left(x+y+z\right)}=\frac{z}{x+y+z}\)
Chứng minh tương tự \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)
\(\frac{1}{x^3+z^3+1}\le\frac{z}{x+y+z}\)
Khi đó \(A\le\frac{x+y+z}{x+y+z}=1\left(đpcm\right)\)
Dấu "=" tại x = y = z = 1
Đang trong quá trình cập nhật những câu tiếp theo , những câu tiếp theo sẽ ở trong phần bình luận