K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

Cộng vế theo vế ta được:

\(2x +2y+2z=y^2+z^2+x^2+1+1+1\)

\(\Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\y-1=0\\z-1=0\end{cases}\Rightarrow x=y=z=1}\)

1 tháng 3 2020

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

18 tháng 2 2017

Đễ thấy \(x=y=z=0\) là 1 nghiệm của hệ

Xét \(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)

Cộng 3 phương trình vế theo vế ta được

\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}=x+y+z\)

Ta có: \(\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)

Tương tự: \(\hept{\begin{cases}\frac{2y^2}{y^2+1}\le y\\\frac{2z^2}{z^2+1}\le z\end{cases}}\)

Cộng vế theo vế ta được:

\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le x+y+z\)

Dấu =  xảy ra khi \(x=y=z=1\)

Vậy nghiệm của hệ là: \(\left(x,y,z\right)=\left(0,0,0;1,1,1\right)\)

PS: Tính không làm đâu nhưng mà đồng hương nên giúp nhau vậy :D

17 tháng 2 2017

nhìn hpt bự con thế này chắc xài BĐT giải r`, chờ mình tẹo :)

23 tháng 8 2020

Sử dụng bđt AM-GM ta có : 

\(1+x^2\ge2\sqrt{1.x^2}=2x< =>y\ge\frac{2x^2}{2x}=x\)

Bằng cách chứng minh tương tự ta được :

\(z\ge\frac{2y^2}{2y}=y;x\ge\frac{2z^2}{2z}=z\)

Cộng 3 vế lại : \(x+y+z\ge x+y+z\)

Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}1=x^2\\1=y^2\\1=z^2\end{cases}< =>...}\)

27 tháng 11 2017

Ta có:\(y=\frac{2x^2}{1+x^2}\le\frac{2x^2}{2x}=x\Leftrightarrow y\le x\)

Tương tự ta có:\(z\le y,y\le x\)

Dấu = xảy ra khi \(x=y=z\)

Đến đây dễ rồi

14 tháng 11 2017
Chịu
11 tháng 1 2022

google xin tài trợ chương trình

27 tháng 1 2017

Nhận xét: Nếu hệ có nghiệm thì nghiệm đó phải thoả \(x,y,z\ge0\).

------

Kí hiệu hàm số \(f\left(x\right)=\frac{2x^2}{x^2+1}\).

Giả sử \(0\le x\le y\) (\(x,y\) này ko liên quan đến hệ). Khi đó ta phát biểu \(f\left(x\right)\le f\left(y\right)\) và biến đổi tương đương thì thấy đúng.

------

Quay lại hệ. Viết lại hệ dưới dạng: \(\hept{\begin{cases}x=f\left(z\right)\\y=f\left(x\right)\\z=f\left(y\right)\end{cases}}\)

Do hệ là bất biến theo phép hoán vị vòng quanh nên ko mất tính tổng quát chỉ cần xét 2 trường hợp:

Trường hợp 1: \(0\le x\le y\le z\). Khi đó theo CM trên thì \(f\left(x\right)\le f\left(y\right)\le f\left(z\right)\) hay \(y\le z\le x\).

Vậy \(x=y=z\) trong trường hợp này.

Trường hợp 2: \(0\le x\le z\le y\). Khi đó theo CM trên thì \(f\left(x\right)\le f\left(z\right)\le f\left(y\right)\) hay \(y\le x\le z\).

Vậy \(x=y=z\) trong trường hợp này.

Tổng hợp lại, trong cả 2 trường hợp ta chỉ cần giải MỘT pt đó là \(\left(x^2+1\right)x=2x^2\).

Pt có nghiệm \(x=0,x=1\).

Vậy \(x=y=z=0,x=y=z=1\) là 2 nghiệm của hệ.

27 tháng 1 2017

chịu ảnh dùng kiến thức thấp hơn được không