K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

đặt A = (2 + 1)(22 + 1)...(2256 + 1).

khi đó (2 - 1)A = (2 -1)(2 + 1)(22 + 1)...(2256 + 1)

suy ra A = 2257 - 1 (dùng hiệu hai bình phương).

nên biểu thức đã cho là A + 1 = 2257.

20 tháng 8 2021

1.
A= \(2\sqrt{6}\) + \(6\sqrt{6}\) - \(8\sqrt{6}\)
A= 0
2.
A= \(12\sqrt{3}\) + \(5\sqrt{3}\) - \(12\sqrt{3}\)
A= 0
3.
A= \(3\sqrt{2}\) - \(10\sqrt{2}\) + \(6\sqrt{2}\)
A= -\(\sqrt{2}\)
4.
A= \(3\sqrt{2}\) + \(4\sqrt{2}\) - \(\sqrt{2}\)
A= \(6\sqrt{2}\)
5.
M= \(2\sqrt{5}\) - \(3\sqrt{5}\) + \(\sqrt{5}\)
M= 0
6.
A= 5 - \(3\sqrt{5}\) + \(3\sqrt{5}\)
A= 5

This literally took me a while, pls sub :D
https://www.youtube.com/channel/UC4U1nfBvbS9y_Uu0UjsAyqA/featured

Ta có: S=A-B

\(=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2+x-1-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

Ta có: M=A+B

\(=\dfrac{x-\sqrt[3]{x}}{x-1}+\dfrac{1}{\sqrt[3]{x}-1}+\dfrac{1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}\)

\(=\dfrac{x-\sqrt[3]{x}}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}+\dfrac{\sqrt[3]{x^2}+\sqrt[3]{x}+1+\sqrt[3]{x}-1}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}\)

\(=\dfrac{x+\sqrt[3]{x}+\sqrt[3]{x^2}}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}\)

\(=\dfrac{\sqrt[3]{x}}{\sqrt[3]{x}-1}\)

24 tháng 6 2021

`6\sqrt(2/3)-\sqrt(24)+2\sqrt(3/8)+2\sqrt(1/6)`

`=6. \sqrt6/3 - \sqrt(2^2 .6) + 2. \sqrt(24)/8 + 2. \sqrt6/6`

`=2\sqrt6-2\sqrt6+ \sqrt6/2 + \sqrt6/3`

`=\sqrt6/2+\sqrt6/3`

`=(3\sqrt6+2\sqrt6)/6`

`=(5\sqrt6)/6`

Ta có: \(6\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\sqrt{\dfrac{3}{8}}+2\sqrt{\dfrac{1}{6}}\)

\(=\dfrac{6\sqrt{2}}{\sqrt{3}}-2\sqrt{6}+2\cdot\dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{2}{\sqrt{6}}\)

\(=2\sqrt{6}-2\sqrt{6}+\dfrac{\sqrt{3}}{\sqrt{2}}+\dfrac{\sqrt{2}}{\sqrt{3}}\)

\(=\dfrac{\sqrt{6}}{2}+\dfrac{\sqrt{6}}{3}=\dfrac{5\sqrt{6}}{6}\)

\(M=\left(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}-1}\right):\left(\sqrt{x}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\) với x>0;x≠1

\(=\left(\dfrac{x\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(x-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{x-\sqrt{x}+\sqrt{x}}{\sqrt{x}-1}\)

\(M=\dfrac{x\sqrt{x}+1-x\sqrt{x}-x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{x}=\dfrac{-x+\sqrt{x}+2}{x\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)}{x\left(\sqrt{x}+1\right)}=\dfrac{2-\sqrt{x}}{x}\)

vậy M=\(\dfrac{2-\sqrt{x}}{x}\)

vì x>0 nên để \(M< 0\Leftrightarrow\dfrac{2-\sqrt{x}}{x}< 0\Leftrightarrow2-\sqrt{x}< 0\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)

10 tháng 12 2023

1,

Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(1A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(A=2^{32}-1\)

Vậy \(A=2^{32}-1\)

2, \(x^2-6x=-9\)

\(x^2-6x+9=0\)

\(\left(x-3\right)^2=0\)

\(x-3=0\)

\(x=3\)

Vậy \(x=3\)

3 tháng 5 2017

ta có :

1/2=1/40+1/40+....+1/40 (20 số hạng)

1/21+1/22+1/23....+1/40(có 20 số hạng)

vì 1/21>1/40

1/22>1/40

..........

1/39>1/40

1/40=1/40

=>A<1/2

A<1 chịu

3 tháng 5 2017

Ta có

\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)

Mà số phần từ của A là 20

\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)

Còn chứng minh bé hơn 1 thì tương tự bạn nhé!

11 tháng 12 2020

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

a: \(A=\left(100-99\right)\left(100+99\right)+\left(98+97\right)\left(98-97\right)+....+\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+97+...+2+1\)

=5050

b: \(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)

\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{64}-1\right)\cdot\left(2^{64}+1\right)+1\)

\(=2^{128}-1+1=2^{128}\)

20 tháng 2 2022

a. \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=199+195+...+3\)

\(=\dfrac{\left(199+3\right)\left(\dfrac{199-3}{4}+1\right)}{2}=5050\)

b. \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=2^{128}-1+1=2^{128}\)

c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-2b^2-4ab\)

\(=2c^2\)