Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc B cắt AC tại E. Trên cạnh BC lấy điểm D sao cho DB = AB. Hai đường thẳng AB và DE cắt nhau tại I. Chứng minh:
a) AE= DE
b) ∆AEI = ∆DEC
c) BE ⊥ CI
d) AC > 2DE
giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>BD=DE
b: Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
=>ΔBDF=ΔEDC
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
Suy ra: BA=BH(hai cạnh tương ứng)
Xet ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
=>BC=DE
a: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>AE=DE
b: Xét ΔEAI vuông tại A và ΔEDC vuông tại D có
EA=ED
góc AEI=góc DEC
=>ΔEAI=ΔEDC
c: BI=BC
EI=EC
=>BE là trung trực của CI
=>BE vuông góc CI
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
Do đo: ΔDBF=ΔDEC
c:ΔDBF=ΔDEC
nên góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>E,D,F thẳng hàng
a: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>AE=DE
b: Xét ΔEAI vuông tại A và ΔEDC vuông tại D có
EA=ED
góc AEI=góc DEC
=>ΔEAI=ΔEDC
c: BI=BC
EI=EC
=>BE là trung trực của CI
=>BE vuông góc CI