1/1*4+1/4*7+1/7*10+...+1/235*238
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
A=1/10+1/40+1/88+1/154+1/238+1/340
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
A=1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20
A=1/2-1/20
A=9/20
D=1/3+1/6+1/12+1/24+1/48
D=1/3+1/2.3+1/3.4+1/4.6+1/6.8
D=1/3+1/2-1/3+1/3-1/4+1/2.(2/4.6+2/6.8)
D=1/3+1/2-1/4+1/2.(1/4-1/6+1/6-1/8)
D=1/3+1/4+1/2.(1/4-1/8)
D=1/3+1/4+1/2.1/8
D=1/3+1/4+1/16
D=31/48
F=0,5-1/3-0,4-4/7-1/6+4/35-1/41
F=1/2-1/3-2/5-4/7-1/6+4/35-1/41
F=1/6-(-6/35)-1/6+4/35-1/41
F=(1/6-1/6)+(6/35+4/35)-1/41
F=0+2/7-1/41
F=2/7+1/41
F=75/287
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
= ( 1 + 9 ) + ( 2 + 8 ) + ( 3 + 7 ) + ( 4 + 6 ) + 10 + 5
= 10 + 10 + 10 + 10 + 10 + 5
= 20 + 20 + 15
= 40 + 15
= 55
b, 1 + 1
= 1 * 2
= 2
c, 2 + 3 + 5
= 5 + 5
= 10
d, 235 - 5
= 230
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=3^{n+2}-2^{n+2}+3^n-2^n\)
\(C=\left(3^{n+2}-2^{n+2}\right)+\left(3^n-2^n\right)\)
\(\Rightarrow C=1^{n+2}+1^n\) (với n \(\in\)N*)
Ta có công thức Cơ số có tận cùng bằng 1 thì mũ lên bao nhiêu cũng bằng 1.(với n \(\in\)N*)
Vì n \(\in\)N* \(\Rightarrow C=1^{n+2}+1^n=\left(...1\right)+\left(...1\right)=\left(...2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2 = 1 + 1 6 = 2 + 4 8 = 5 + 3 10 = 8 + 2
3 = 1 + 2 6 = 3 + 3 8 = 4 + 4 10 = 7 + 3
4 = 3 + 1 7 = 1 + 6 9 = 8 + 1 10 = 6 + 4
4 = 2 + 2 7 = 5 + 2 9 = 6+ 3 10 = 5 + 5
5 = 4 + 1 7 = 4 + 3 9 = 7 + 2 10 = 10 + 0
5 = 3 + 2 8 = 7 + 1 9 = 5 + 4 10 = 0 + 10
6 = 5 + 1 8 = 6 + 2 10 = 9 + 1 1 = 1 + 0
Ta đặt
\(A=\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+...+\dfrac{1}{235\times238}\)
\(3A=\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+...+\dfrac{3}{235\times238}\)
\(3A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{235}-\dfrac{1}{238}\)
\(3A=1-\dfrac{1}{238}\)
\(A=\dfrac{237}{238}\div3\)
\(A=\dfrac{237}{714}\)
\(A=\dfrac{1}{1x4}+\dfrac{1}{4x7}+....\dfrac{1}{235x238}\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+....+\dfrac{1}{235}-\dfrac{1}{238}\)
\(A=1-\dfrac{1}{238}=\dfrac{237}{238}\)