Tính tổng sau : A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)
\(A=\frac{1}{1}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A=1-\frac{1}{2017}\)
\(\Rightarrow A=\frac{2016}{2017}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A=1-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2004.2005}\)
\(A=\frac{1}{1.2}=1-\frac{1}{2}\)
\(A=\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(A=1-\frac{1}{2004}\)
\(A=\frac{2003}{2004}\)
Ủng hộ tk Đúng nha mọi người !!! ^^
\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\); \(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); \(\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\);...; \(\frac{1}{2004.2005}=\frac{1}{2004}-\frac{1}{2005}\)
=> A=\(\frac{1}{1}-\frac{1}{2005}=\frac{2004}{2005}\)
Ta có \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)
\(\Rightarrow A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(\frac{2016}{2017}\right)\)
\(\Rightarrow A=\frac{4032}{2017}\)
Ta có:\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+....+\frac{2}{2016\cdot2017}\)
\(=\frac{2}{1}-\frac{2}{2}+\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+....+\frac{2}{2016}-\frac{2}{2017}\)
\(=\frac{2}{1}-\frac{2}{2017}=2-\frac{2}{2017}=\frac{4034}{2017}-\frac{2}{2017}=\frac{4032}{2017}\)
mình đã thi học kì bài này và mình được 10, nhưng đã 1 năm trôi qua nên mình quên mất tiêu rùi.
rất tiếc, chúc bạn may mắn
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{1000}{1000}-\frac{1}{1000}+\frac{1000}{1000}\)
\(=\frac{1999}{1000}\)
Tham khảo nhé~
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{50-1}{50}=\frac{49}{50}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
= \(1-\frac{1}{2017}\)
= \(\frac{2016}{2017}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2016}+\frac{1}{2016}\right)-\frac{1}{2017}\)
\(A=1+0+0+...+0-\frac{1}{2017}\)
\(A=1-\frac{1}{2017}\)
\(A=\frac{2017}{2017}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
Vậy: \(A=\frac{2016}{2017}\)