K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AB<BC là đề sai rồi bạn

17 tháng 4 2022

A C B M N D

a, Áp dụng Đ. L. py-ta-go vào tg ABC cân tại A, có:

BC2=AC2+AB2

=>152=AC2+92

     225=AC2+81

=>AC=225-81

         =144.

=>AC=12cm.

b, Xét tg ABM và tg NCM, có: 

MB=MC(M là trung điển của BC)

góc AMB= góc CMN(đối đỉnh)

AM=NM(gt)

=>tg ABM= tg NCM(c. g. c)

=>góc ABM= góc NCM(2 góc tương ứng)

c, Ta có: góc BAC+ góc DAC=180o

                 =>góc DAC= 180o- góc BAC 

                                   =180o-90o

                                   =90o

Xét tg ACB và tg ACD, có: 

AB=AD(A là trung điểm của BC)

góc BAC = góc DAC(=90o)

AC chung

=>tg ABC= tg ADC(2 cạnh góc vuông)

=>BC=DC(2 cạnh tương ứng)

=>tg CBD cân tại C(đpcm)

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

16 tháng 7 2015

a) Áp dụng định lí Py-ta-go vào tam giác ACM, ta có:

   \(AM^2+CM^2=CA^2\)

Hay \(3,5^2+CM^2=5^2\)=>\(CM^2\)=25-12,25=12,75 => CM=\(\sqrt{12,75}\)

Vì M là trung điểm của CB => CM =MB =\(\sqrt{12,75}\)

=> CB= 2. \(\sqrt{12,75}\) =\(\sqrt{51}\)

Áp dụng định lí Py-ta-go vào tam giác ABC, ta có:

AC^2+AB^2=BC^2

Hay 5^2+AB^2=\(\sqrt{51}^2\)

=>AB=\(\sqrt{26}\)

b) BN=\(\frac{\sqrt{26}}{2}\)

CP=\(\frac{\sqrt{74}}{2}\)

Hình như vậy đó bạn

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)

mà BE+CE=BC=5cm(gt)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)