A=\(\dfrac{x_2\sqrt{x_1}+x_1\sqrt{x_2}}{x_1-x_2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ptrình : \(x^2-7x+10=0\)
Ta có : \(\Delta=\left(-7\right)^2-4.1.10=9>0\)
=> Phương trình có 2 nghiệm phân biệt \(x1\) và \(x2\)
\(x1=\dfrac{-\left(-7\right)+\sqrt{\Delta}}{2.1}=\dfrac{7+\sqrt{9}}{2}=5\)
\(x2=\dfrac{-\left(-7\right)-\sqrt{\Delta}}{2.1}=\dfrac{7-\sqrt{9}}{2}=2\)
Vậy :
A = \(x_1^2+x_2^2+3x_1x_2=5^2+2^2+3.5.2=59\)
B = .................
.... (có x1 và x2 rồi thik thay vào lak tính đc, cái này bn tự tính nha)
Lời giải:
Theo định lý Viet:
$x_1+x_2=19$
$x_1x_2=9$
Khi đó:
\(x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)
\(=(\sqrt{x_1}+\sqrt{x_2})(19-\sqrt{9})=16(\sqrt{x_1}+\sqrt{x_2})\)
\(=16\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=16\sqrt{19+2\sqrt{9}}=80\)
\(x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=19^2-2.9=343\)
$\Rightarrow P=\frac{80}{343}$
Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=8\end{matrix}\right.\)
Theo đề:
\(B=\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(x_1+\sqrt{x_1x_2}+x_2\right)}{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)}\left(x_1,x_2\ge0\right)\)
\(=\dfrac{6+\sqrt{8}}{\sqrt{x_1}+\sqrt{x_2}}\)
Tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=6+2\sqrt{8}=6+4\sqrt{2}=\left(\sqrt{4}+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=\sqrt{4}+\sqrt{2}\) (thỏa mãn \(x_1,x_2\ge0\))
Khi đó: \(P=\dfrac{6+\sqrt{8}}{\sqrt{4}+\sqrt{2}}=4-\sqrt{2}\)
\(\sqrt{x_1^2-1^2}+2\sqrt{x^2_2-2^2}+...+100\sqrt{x_{100}^2-100^2}=\dfrac{1}{2}\left(x_1^2+x^2_2+...+x_{100}^2\right)\)
\(\Leftrightarrow2\sqrt{x_1^2-1^2}+4\sqrt{x^2_2-2^2}+...+200\sqrt{x_{100}^2-100^2}=x_1^2+x^2_2+...+x_{100}^2\)
\(\Leftrightarrow x_1^2-1-2\sqrt{x_1^2-1}+1+x^2_2-4-4\sqrt{x^2_2-4}+4+...+x^2_{100}-10000-200\sqrt{x_{100}^2-10000}+10000=0\)
\(\Leftrightarrow\left(\sqrt{x^2_1-1}-1\right)^2+\left(\sqrt{x^2_2-4}-2\right)^2+....+\left(\sqrt{x^2_{100}-10000}-100\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2_1-1}-1=0\\\sqrt{x^2_2-4}-2=0\\....\\\sqrt{x^2_{100}-10000}-100=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\sqrt{1^2+1}=\sqrt{2}\\x_2=\sqrt{2^2+4}=2\sqrt{2}\\....\\x_{100}=\sqrt{100^2+10000}=100\sqrt{2}\end{matrix}\right.\)
(căn x1+căn x2)^2=x1+x2+2*căn x1x2
=12+2*căn 4=16
=>căn x1+căn x2=4
\(T=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}=\dfrac{12^2-2\cdot4}{4}=34\)
Em nên ghi rõ cả đề ra chứ độc 1 biểu thức thế này thì sao mà biết?
,có \(ac< 0\)=>pt đã cho luôn có 2 nghiệm phân biệt
vi ét \(=>\left\{{}\begin{matrix}x1+x2=2\\x1x2=-1\end{matrix}\right.\)
a,\(A=\left(x1+x2\right)^2-2x1x2=.....\) thay số tính
b,\(B=\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)=.......\)
c,\(C=x1^{2^2}+x2^{2^2}=\left(x1^2+x2^2\right)^2-2\left(x1x2\right)^2=\left[\left(x1+x2\right)^2-2x1x2\right]^2-2\left(x1x2\right)^2=....\)
\(D=x1x2\left(x1+x2\right)=.....\)
\(x1,x2\ne0=>E=\dfrac{\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)}{x1x2}=...\)
\(F=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}=....\)
\(x1,x2\ne-1=>G=\dfrac{\left(x1+x2\right)^2-2x1x2+x1x2}{x1x2+x1+X2+1}=...\)
\(x1,x2\ne0=>H=\left(\dfrac{x1x2+2}{x2}\right)\left(\dfrac{x1x2+2}{x1}\right)=\dfrac{\left(x1x2+2\right)^2}{x1x2}\)
\(=\dfrac{\left(x1x2\right)^2+4x1x2+4}{x1x2}=..\)
đề bài yêu cầu gì ạ?