K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2023

Kí hiệu tắt ông là M và bà là W. Không gian mẫu E có \(6!=720\) (phần tử).

1.

Có 2 cách xếp người cùng phái ngồi gần nhau: \(MMMWWW,WWWMMM\).

Có \(3!=6\) cách ngồi của 3 ông và có \(3!=6\) cách ngồi của 3 bà.

Vậy xác suất phải tính là \(P=\dfrac{2.3!.3!}{6!}=\dfrac{1}{10}\)

2. 

Có 4 cách sắp xếp 3 bà ngồi gần nhau: \(MMMWWW,MMWWWM,MWWWMM,WWWMMM\).

Có \(3!=6\) cách sắp xếp 3 ông và có \(3!=6\) cách sắp xếp 3 bà.

Vậy xác suất phải tính là \(P=\dfrac{4.3!.3!}{6!}=\dfrac{1}{5}\).

3.

Có 2 cách sắp xếp 3 ông và 3 bà ngồi xen kẽ nhau: \(MWMWMW,WMWMWM.\)

Có \(3!=6\) cách sắp xếp 3 ông và có \(3!=6\) cách sắp xếp 3 bà.

Vậy xác suất phải tính là \(P=\dfrac{2.3!.3!}{6!}=\dfrac{1}{10}\)

7 tháng 8 2017

Không gian mẫu là việc sắp xếp 6 bạn vào 6 ghế tùy ý

⇒ n(Ω) = P6 = 6! = 720.

a. Gọi A: “ Nam, nữ ngồi xen kẽ nhau”

+ Chọn chỗ ngồi cho 3 bạn nữ: Có 2 cách (Vị trí 1,3,5 hoặc 2,4,6).

+ Sắp xếp 3 bạn nữ vào 3 chỗ: Có 3! = 6 cách

+ Sắp xếp 3 bạn nam vào 3 chỗ còn lại: Có 3! = 6 cách

⇒ Theo quy tắc nhân: n(A) = 2.6.6 = 72 (cách).

⇒ n(A) = 2.3!.3! = 72

Giải bài 5 trang 76 sgk Đại số 11 | Để học tốt Toán 11

b. B: “Ban bạn nam ngồi cạnh nhau”

+ Chọn 3 chỗ ngồi cạnh nhau cho 3 bạn nam: Có 4 cách.

+ Sắp xếp 3 bạn nam vào 3 chỗ: Có 3! = 6 cách.

+ Sắp xếp 3 bạn nữ vào 3 chỗ còn lại: Có 3! = 6 cách

⇒ Theo quy tắc nhân: n(B) = 4.6.6 = 144 (cách)

Giải bài 5 trang 76 sgk Đại số 11 | Để học tốt Toán 11

Xác suất để ba bạn nam ngồi cạnh nhau là:

Giải bài 5 trang 76 sgk Đại số 11 | Để học tốt Toán 11

4 tháng 4 2017

Số cách xếp 3 nam và 3 nữ vào 6 ghế là 6! Cách.

Suy ra: \(n\left(\Omega\right)=6!=720\)

a) Ta gọi A là biến cố : “Nam, nữ ngồi xen kẽ nhau”

Ta đánh số ghế như sau:

1 2 3 4 5 6

Trường hợp 1:

+ Nam ngồi ghế số 1, 3, 5 suy ra có 3! cách xếp

+ Nữ ngồi ghế số 2, 4, 6 suy ra có 3! cách xếp

Suy ra trường hợp 1 có 3!.3! = 36 cách xếp

Trường hợp 2:

+ Nữ ngồi ghế số 1, 3, 5 suy ra có 3! cách xếp

+ Nam ngồi ghế số 2, 4, 6 suy ra có 3! cách xếp

Suy ra trường hợp 1 có 3!.3! = 36 cách xếp

Suy ra:

N(A) = 3!.3! + 3!.3! = 36 + 36 = 72 cách xếp.

Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{72}{720}=\dfrac{1}{10}=0,1\)

b) Gọi biến cố B: “Ba bạn nam ngồi cạnh nhau”

Xem 3 bạn nam như một phần tử N và N cùng 3 bạn nữ được xem như ngồi vào 4 ghế được đánh số như sau:

1 2 3 4

_ Số cách xếp N và 3 nữ vào 4 ghế là 4!

_ Mỗi cách hoán vị 3 nam cho nhau trong cùng một vị trí ta có thêm 3! cách xếp khác nhau.

Suy ra n(B) = 4!.3!=144

Vậy: \(P\left(B\right)=\dfrac{n\left(B\right)}{n\left(\Omega\right)}=\dfrac{144}{720}=\dfrac{1}{5}=0,2\)

9 tháng 4 2017

Số cách xếp 3 nam và 3 nữ vào 6 ghế là 6! Cách.

Suy ra: n(Ω)=6!=720n(Ω)=6!=720

a) Ta gọi A là biến cố : “Nam, nữ ngồi xen kẽ nhau”

Ta đánh số ghế như sau:

1

2

3

4

5

6

Trường hợp 1:

+ Nam ngồi ghế số 1, 3, 5 suy ra có 3! cách xếp

+ Nữ ngồi ghế số 2, 4, 6 suy ra có 3! cách xếp

Suy ra trường hợp 1 có 3!.3! = 36 cách xếp

Trường hợp 2:

+ Nữ ngồi ghế số 1, 3, 5 suy ra có 3! cách xếp

+ Nam ngồi ghế số 2, 4, 6 suy ra có 3! cách xếp

Suy ra trường hợp 1 có 3!.3! = 36 cách xếp

Suy ra:

N(A) = 3!.3! + 3!.3! = 36 + 36 = 72 cách xếp.

Vậy P(A)=n(A)n(Ω)=72720=110=0,1P(A)=n(A)n(Ω)=72720=110=0,1

b) Gọi biến cố B: “Ba bạn nam ngồi cạnh nhau”

Xem 3 bạn nam như một phần tử N và N cùng 3 bạn nữ được xem như ngồi vào 4 ghế được đánh số như sau:

1

2

3

4

_ Số cách xếp N và 3 nữ vào 4 ghế là 4!

_ Mỗi cách hoán vị 3 nam cho nhau trong cùng một vị trí ta có thêm 3! cách xếp khác nhau.

Suy ra n(B) = 4!.3!=144

Vậy : P(B)=n(B)n(Ω)=144720=15=0,2



7 tháng 1 2017

Chọn đáp án A.

17 tháng 10 2018

Đáp án là A

22 tháng 12 2017

Đáp án A

16 tháng 11 2018

28 tháng 2 2019

Không gian mẫu gồm các hoán vị của 6 người. Vậy n(Ω) = 6!

Kí hiệu A là biến cố : " Đứa bé được xếp giữa hai người đàn bà ";

B là biến cố : " Đứa bé được xếp giữa hai người đàn ông ".

a) Để tạo nên một cách xếp mà đứa bé được xếp giữa hai người đàn bà, ta tiến hành như sau :

- Xếp đứa bé ngồi vào ghế thứ hai đến ghế thứ năm. Có 4 cách.

- Ứng với mỗi cách xếp đứa bé, có 2 cách xếp hai người đàn bà.

- Khi đã xếp hai người đàn bà và đứa bé, xếp ba người đàn ông vào các chỗ còn lại. Có 3! cách.

Theo quy tắc nhân, ta có n(A) = 4.2.3! = 48.

Từ đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Để tạo nên một cách xếp mà đứa bé ngồi giữa hai người đàn ông, ta tiến hành như sau :

- Xếp đứa bé vào các ghế thứ hai đến thứ năm. Có 4 cách.

- Chọn hai trong số ba người đàn ông. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

- Xếp hai người đàn ông ngồi hai bên đứa bé. Có 2 cách.

- Xếp ba người còn lại vào ba chỗ còn lại. Có 3! cách. Theo quy tắc nhân, ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11