K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

\(=\frac{2}{5}+\frac{1}{5}\cdot1=\frac{3}{5}\)

12 tháng 5 2017

1/5 + 1/5 + 1/5 x 5/5

= 1/5 + 1/5 + 1/5

= 1/5 x 3

= 3/5

Vậy đáp án là 3/5

23 tháng 4 2018

\(\frac{\frac{4}{17}+\frac{4}{19}-\frac{4}{2111}}{\frac{5}{17}+\frac{5}{19}-\frac{5}{2111}}-\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}}{-\frac{5}{123}+\frac{5}{19}-\frac{5}{371}+1}\)

\(=\frac{4.\left(\frac{1}{17}+\frac{1}{19}-\frac{1}{2111}\right)}{5.\left(\frac{1}{17}+\frac{1}{19}-\frac{1}{2111}\right)}+\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}}{5.\left(\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}\right)}=\frac{4}{5}+\frac{1}{5}=1\)

29 tháng 6 2018

Cho tam giác ABC có đường cao AD .Gọi E là trung điểm  của AB .F đối xứng vs D qua E c/m AB = DF

18 tháng 1 2019

Bạn lấy 1/5 ở cả phân số 1 và 2 làm thừa số chung sau đó rút gọn và sẽ tìm đc kết qyar là 0

18 tháng 1 2019

\(P=2018.\left(\frac{\frac{1}{3}-\frac{1}{5}+\frac{1}{7}}{\frac{5}{3}-1+\frac{5}{7}}+\frac{1+\frac{4}{5}-\frac{2}{3}}{\frac{5}{4}+1-\frac{5}{6}}\right):\frac{20182018}{20192019}\)

\(P=\frac{\frac{1}{3}-\frac{1}{5}+\frac{1}{7}}{\frac{5}{3}-1+\frac{5}{7}}+\frac{1+\frac{4}{5}-\frac{2}{3}}{\frac{5}{4}+1-\frac{5}{6}}:\frac{20182018}{20192019}\)

\(P=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{5}}{\frac{5}{3}+\frac{5}{7}-1}+\frac{1+\frac{4}{5}-\frac{2}{3}}{1+\frac{5}{4}-\frac{5}{6}}:\frac{20182018}{20192019}\)

\(P=20192019\left(\frac{1+\frac{4}{5}-\frac{2}{3}}{1+\frac{5}{4}-\frac{5}{6}}+\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{5}}{\frac{5}{3}+\frac{5}{7}-1}\right):20182018\)

\(P=2019\left(\frac{1+\frac{4}{5}-\frac{2}{3}}{1+\frac{5}{4}-\frac{5}{6}}+\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{5}}{\frac{5}{3}+\frac{5}{7}-1}\right).2018\)

\(P=2019\left(\frac{1}{5}+\frac{4}{5}\right):2018\)

\(P=2019.1:2018\)

\(P=\frac{2019}{2018}\)

\(P=2018.\frac{2019}{2018}\)

\(P=2019\)

21 tháng 8 2015

Khi \(n=1\to A=\frac{1}{5S_1^2}=\frac{5}{36}<\frac{35}{36}.\)  Ta xét trường hợp \(n\ge2.\)

Theo giả thiết thì \(S_k=S_{k-1}+\frac{1}{5^k}>S_{k-1}\to S^2_k>S_k\cdot S_{k-1}\).

Vậy ta có \(\frac{1}{5^kS_k^2}<\frac{1}{5^kS_kS_{k-1}}=\frac{S_k-S_{k-1}}{S_kS_{k-1}}=\frac{1}{S_{k-1}}-\frac{1}{S_k}.\)   Cho \(k=2,3,\ldots,n\)  rồi cộng lại ta được

\(A<\frac{1}{5S_1^2}+\left(\frac{1}{S_1}-\frac{1}{S_2}\right)+\left(\frac{1}{S_2}-\frac{1}{S_3}\right)+\cdots+\left(\frac{1}{S_{n-1}}-\frac{1}{S_n}\right)\)

\(=\frac{1}{5S_1^2}+\frac{1}{S_1}-\frac{1}{S_n}<\frac{1}{5S_1^2}+\frac{1}{S_1}=\frac{5}{36}+\frac{5}{6}=\frac{35}{36}.\)   (ĐPCM)

 

\(\frac{5}{7}\times\frac{1}{3}-\frac{5}{7}\times\frac{1}{4}-\frac{5}{7}\times\frac{1}{2}\)

\(=\frac{5}{7}\times\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{2}\right)\)

\(=\frac{5}{7}\times\left(\frac{4}{12}-\frac{3}{12}-\frac{6}{12}\right)\)

\(=\frac{5}{7}\times\left(\frac{4-3-6}{12}\right)\)

\(=\frac{5}{7}\times\frac{-5}{12}\)

\(=\frac{5\times\left(-5\right)}{7\times12}\)

\(=\frac{-25}{84}\)

3 tháng 5 2019

\(\frac{5}{7}.\frac{1}{3}-\frac{5}{7}.\frac{1}{4}-\frac{5}{7}.\frac{1}{2}\)

\(\frac{5}{7}.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{2}\right).1\)

\(=\frac{5}{7}.\frac{-5}{12}\)

\(=-\frac{25}{84}\)