CMR B=n^3(n^2-7) -36n chia het cho 105 voi moi n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=B
Vì đây là 7 số liên tiếp
nên A chia hết cho 7!
=>B chia hết cho 105
\(A=n^3\left(n^2-7\right)^2-36n\)
\(=n\left[n^2\left(n-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-6^2\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=n\left[n^3+n^2-n^2-n-6n-6\right].\left[n^3-n^2+n^2-n-6n+6\right]\)
\(=n\left[n^2\left(n+1\right)-n\left(n+1\right)-6\left(n+1\right)\right]\left[n^2\left(n-1\right)+n\left(n-1\right)-6\left(n-1\right)\right]\)
\(=n\left(n+1\right)\left(n^2-n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)
\(=n\left(n+1\right)\left[n\left(n-3\right)+2\left(n-3\right)\right]\left(n-1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)
\(=n\left(n+1\right)\left(n-3\right)\left(n+2\right)\left(n-1\right)\left(n+3\right)\left(n-2\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì A là tích của 7 số nguyên liên tiếp nên A chia hết cho 3,5 và 7
\(\Rightarrow A⋮\left(3.5.7\right)\Rightarrow A⋮105\)
Chúc bạn học tốt.
Ta có:
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2 +1)-2^n(2^2 +1)
=3^n.10-2^n.5=3^n.10-2^(n-1).10
=(3^n-2^(n-1)).10 chia het cho 10
Tick nhé
Bạn ghi sai đề ạ --.- mk sửa lại thành
\(B=n^3\left(n^2-7\right)^2-36n\)
\(=n\left[n^2\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-6^2\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=n\left(n+1\right)\left(n-3\right)\left(n+2\right)\left(n+3\right)\left(n-2\right)\left(n-1\right)\)
vì __________________________________________________________ là tích của 7 số nguyên liên tiếp suy ra B chia hết cho 105
mà bn ơi cái chỗ a 7 số tự nhiên liên tiếp làm các bước như nào vậy